IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v124y2018icp189-196.html
   My bibliography  Save this article

A novel process intensification strategy for second-generation ethanol production from sugarcane bagasse in fluidized bed reactor

Author

Listed:
  • Antunes, F.A.F.
  • Chandel, A.K.
  • Brumano, L.P.
  • Terán Hilares, R.
  • Peres, G.F.D.
  • Ayabe, L.E.S.
  • Sorato, V.S.
  • Santos, J.R.
  • Santos, J.C.
  • Da Silva, S.S.

Abstract

Due to forthcoming scarcity of fossil fuels and serious environmental concerns, concerted efforts are required to develop the intensified and robust ethanol production from renewable sources. Currently, lignocellulosic materials are among the main available renewable carbon source in the world. Within this context, we present a novel proposal of intensification of the process for second generation (2G) ethanol production from sugarcane bagasse (SCB) employing fluidized bed reactor. Successive steps of SCB i.e. alkaline pre-treatment, saccharification and fermentation to ethanol were carried out in a same column reactor without opening it during the entire process. In the alkaline pretreatment process, a 22 full factorial design of experiments was designed and executed to evaluate the effect of NaOH concentration (from 0.1 to 0.5 M) and time (from 1 to 4 h) on the enzymatic digestibility of pretreated biomass. Enzymatic hydrolysis yielded glucose and xylose of around 87% and 43%, were achieved, respectively, in saccharification step, when used alkaline pre-treated biomass conducted in process by using variables in high level. Thus, Simultaneous saccharification and co-fermentation (SSCF) were performed by using the wild xylose and glucose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2, verifying ethanol yield and productivity of 0.34 g/g and 0.18 g L/h, respectively. Results showed the potential of using fluidized bed reactor for ethanol production under different process conditions, reducing equipments and process costs with mass transference.

Suggested Citation

  • Antunes, F.A.F. & Chandel, A.K. & Brumano, L.P. & Terán Hilares, R. & Peres, G.F.D. & Ayabe, L.E.S. & Sorato, V.S. & Santos, J.R. & Santos, J.C. & Da Silva, S.S., 2018. "A novel process intensification strategy for second-generation ethanol production from sugarcane bagasse in fluidized bed reactor," Renewable Energy, Elsevier, vol. 124(C), pages 189-196.
  • Handle: RePEc:eee:renene:v:124:y:2018:i:c:p:189-196
    DOI: 10.1016/j.renene.2017.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dussán, Kelly J. & Silva, Débora D.V. & Perez, Victor H. & da Silva, Silvio S., 2016. "Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast," Renewable Energy, Elsevier, vol. 87(P1), pages 703-710.
    2. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicoleta Ungureanu & Valentin Vlăduț & Sorin-Ștefan Biriș, 2022. "Sustainable Valorization of Waste and By-Products from Sugarcane Processing," Sustainability, MDPI, vol. 14(17), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Thota, Sai Praneeth & Badiya, Pradeep Kumar & Yerram, Sandeep & Vadlani, Praveen V. & Pandey, Meera & Golakoti, Nageswara Rao & Belliraj, Siva Kumar & Dandamudi, Rajesh Babu & Ramamurthy, Sai Sathish, 2017. "Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses," Renewable Energy, Elsevier, vol. 103(C), pages 766-773.
    3. Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.
    4. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. He, Boyang & Hao, Bo & Yu, Haizhong & Tu, Fen & Wei, Xiaoyang & Xiong, Ke & Zeng, Yajun & Zeng, Hu & Liu, Peng & Tu, Yuanyuan & Wang, Yanting & Kang, Heng & Peng, Liangcai & Xia, Tao, 2022. "Double integrating XYL2 into engineered Saccharomyces cerevisiae strains for consistently enhanced bioethanol production by effective xylose and hexose co-consumption of steam-exploded lignocellulose ," Renewable Energy, Elsevier, vol. 186(C), pages 341-349.
    6. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    7. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    8. Qu, Chunyun & Dai, Kaiqun & Fu, Hongxin & Wang, Jufang, 2021. "Enhanced ethanol production from lignocellulosic hydrolysates by Thermoanaerobacterium aotearoense SCUT27/ΔargR1864 with improved lignocellulose-derived inhibitors tolerance," Renewable Energy, Elsevier, vol. 173(C), pages 652-661.
    9. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    11. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    12. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    13. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    14. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    15. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    16. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    17. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    18. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    19. Mertzanis, Charilaos, 2018. "Institutions, development and energy constraints," Energy, Elsevier, vol. 142(C), pages 962-982.
    20. Guragain, Yadhu N. & Wang, Donghai & Vadlani, Praveen V., 2016. "Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading," Renewable Energy, Elsevier, vol. 96(PA), pages 832-842.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:124:y:2018:i:c:p:189-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.