IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics136403212101090x.html
   My bibliography  Save this article

Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics

Author

Listed:
  • Huang, Caoxing
  • Jiang, Xiao
  • Shen, Xiaojun
  • Hu, Jinguang
  • Tang, Wei
  • Wu, Xinxing
  • Ragauskas, Arthur
  • Jameel, Hasan
  • Meng, Xianzhi
  • Yong, Qiang

Abstract

Efficiently producing second-generation biofuels from biomass is of strategic significance and meets sustainability targets, but it remains a long-term challenge due to the existence of biomass recalcitrance. Lignin contributes significantly to biomass recalcitrance by physically limiting the access of enzymes to carbohydrates, and this could be partially overcome by applying a pretreatment step to directly target lignin. However, lignin typically cannot be completely removed, and its structure is also significantly altered during the pretreatment. As a result, lignin residue in the pretreated materials still significantly hindered a complete conversion of carbohydrate to its monosugars by interacting with cellulase enzymes. The non-productive adsorption driven by hydrophobic, electrostatic, and/or hydrogen bonding interactions is widely considered as the major mechanism of action governing the unfavored lignin-enzyme interaction. One could argue this type of interaction between lignin residue and the activated enzymes is the major roadblock for efficient enzymatic hydrolysis of pretreated lignocellulosics. To alleviate the negative effects of lignin on enzyme performance, a deep understanding of lignin structural transformation upon different types of pretreatments as well as how and where does lignin bind to enzymes are prerequisites. In the last decade, the progress toward a fundamental understanding of lignin-enzyme interaction, structural characterization of lignin during pretreatment and/or conformation change of enzyme during hydrolysis is resulting in advances in the development of methodologies to mitigate the negative effect of lignin. Here in this review, the lignin structural transformation upon different types of pretreatments and the inhibition mechanism of lignin in the bioconversion of lignocellulose to bioethanol are summarized. Some technologies to minimize the adverse impact of lignin on the enzymatic hydrolysis, including chemical modification of lignin, adding blocking additives, and post-treatment to remove lignin were also introduced. The production of liquid biofuels from lignocellulosic biomass has shown great environmental benefits such as reducing greenhouse gas emissions and mitigate climate change. By addressing the root causes of lignin-enzyme interaction and how to retard this interaction, it is our hope that this comprehensive review will pave the way for significantly reducing the high cost associated with the enzymatic hydrolysis process, and ultimately achieving a cost-effective and sustainable biorefinery system.

Suggested Citation

  • Huang, Caoxing & Jiang, Xiao & Shen, Xiaojun & Hu, Jinguang & Tang, Wei & Wu, Xinxing & Ragauskas, Arthur & Jameel, Hasan & Meng, Xianzhi & Yong, Qiang, 2022. "Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s136403212101090x
    DOI: 10.1016/j.rser.2021.111822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212101090X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chovau, Simon & Degrauwe, David & Van der Bruggen, Bart, 2013. "Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 307-321.
    2. Patricia Portero-Barahona & Enrique Javier Carvajal-Barriga & Jesús Martín-Gil & Pablo Martín-Ramos, 2019. "Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment," Energies, MDPI, vol. 12(9), pages 1-15, May.
    3. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    4. Karimi, Mahmoud & Jenkins, Bryan & Stroeve, Pieter, 2014. "Ultrasound irradiation in the production of ethanol from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 400-421.
    5. Saini, Jitendra Kumar & Patel, Anil Kumar & Adsul, Mukund & Singhania, Reeta Rani, 2016. "Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 29-42.
    6. Ik Muo & Adebayo Azeez, A., 2019. "Green Entrepreneurship: Literature Review And Agenda For Future Research," International Journal of Entrepreneurial Knowledge, Center for International Scientific Research of VSO and VSPP, vol. 7(2), pages 17-29, December.
    7. Zheng, Yi & Lee, Christopher & Yu, Chaowei & Cheng, Yu-Shen & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2013. "Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol," Applied Energy, Elsevier, vol. 105(C), pages 1-7.
    8. Zhao, Xuebing & Wen, Jialong & Chen, Hongmei & Liu, Dehua, 2018. "The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production," Renewable Energy, Elsevier, vol. 128(PA), pages 200-209.
    9. Jingwen Zhao & Dong Tian & Fei Shen & Jinguang Hu & Yongmei Zeng & Churui Huang, 2019. "Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    10. Garlapati, Vijay Kumar & Chandel, Anuj K. & Kumar, S.P. Jeevan & Sharma, Swati & Sevda, Surajbhan & Ingle, Avinash P. & Pant, Deepak, 2020. "Circular economy aspects of lignin: Towards a lignocellulose biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Ivana Blazkova & Ondrej Dvoulety, 2018. "Sectoral And Firm-Level Determinants Of Profitability: A Multilevel Approach," International Journal of Entrepreneurial Knowledge, Center for International Scientific Research of VSO and VSPP, vol. 6(2), pages 32-44, December.
    12. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Yu, Kai Ling & Chen, Wei-Hsin & Sheen, Herng-Kuang & Chang, Jo-Shu & Lin, Chih-Sheng & Ong, Hwai Chyuan & Show, Pau Loke & Ng, Eng-Poh & Ling, Tau Chuan, 2020. "Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment," Renewable Energy, Elsevier, vol. 156(C), pages 349-360.
    14. Milovanoff, Alexandre & Posen, I. Daniel & Saville, Bradley A. & MacLean, Heather L., 2020. "Well-to-wheel greenhouse gas implications of mid-level ethanol blend deployment in Canada's light-duty fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Katharine Sanderson, 2011. "Lignocellulose: A chewy problem," Nature, Nature, vol. 474(7352), pages 12-14, June.
    16. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Gomes, Michelle Garcia & Paranhos, Aline Gomes de Oliveira & Camargos, Adonai Bruneli & Baêta, Bruno Eduardo Lobo & Baffi, Milla Alves & Gurgel, Leandro Vinícius Alves & Pasquini, Daniel, 2022. "Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: Use of black liquor and solid fraction for biogas production," Renewable Energy, Elsevier, vol. 191(C), pages 428-438.
    3. Xu, Ling-Hua & Ma, Cheng-Ye & Zhang, Chen & Xu, Ying & Wen, Jia-Long & Yuan, Tong-Qi, 2022. "An integrated acetic acid-catalyzed hydrothermal-pretreatment (AAP) and rapid ball-milling for producing high-yield of xylo-oligosaccharides, fermentable glucose and lignin from poplar wood," Renewable Energy, Elsevier, vol. 201(P1), pages 691-699.
    4. Liu, Tian & Wang, Peipei & Tian, Jing & Guo, Jiaqi & Zhu, Wenyuan & Bushra, Rani & Huang, Caoxing & Jin, Yongcan & Xiao, Huining & Song, Junlong, 2024. "Emerging role of additives in lignocellulose enzymatic saccharification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Song, Guojie & Bai, Yalin & Pan, Zhenying & Liu, Dan & Qin, Yuanhang & Zhang, Yinchao & Fan, Zhihao & Li, Yuhan & Madadi, Meysam, 2024. "Enhancing fermentable sugar production from sugarcane bagasse through surfactant-assisted ethylene glycol pretreatment and enzymatic hydrolysis: Reduced temperature and enzyme loading," Renewable Energy, Elsevier, vol. 227(C).
    6. Mikulski, Dawid & Kłosowski, Grzegorz, 2023. "Cellulose hydrolysis and bioethanol production from various types of lignocellulosic biomass after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 206(C), pages 168-179.
    7. Sun, Shao-Chao & Xu, Ying & Ma, Cheng-Ye & Zhang, Chen & Zuo, Cheng & Sun, Dan & Wen, Jia-Long & Yuan, Tong-Qi, 2023. "Green and efficient fractionation of bamboo biomass via synergistic hydrothermal-alkaline deep eutectic solvents pretreatment: Valorization of carbohydrates," Renewable Energy, Elsevier, vol. 217(C).
    8. Zhang, Zhicai & Zheng, Huihua & Qian, Jingya, 2023. "Pretreatment with a combination of steam explosion and NaOH increases butanol production of enzymatically hydrolyzed corn stover," Renewable Energy, Elsevier, vol. 203(C), pages 301-311.
    9. Antonio Manuel Pérez-Merchán & Gabriela Rodríguez-Carballo & Benjamín Torres-Olea & Cristina García-Sancho & Pedro Jesús Maireles-Torres & Josefa Mérida-Robles & Ramón Moreno-Tost, 2022. "Recent Advances in Mechanochemical Pretreatment of Lignocellulosic Biomass," Energies, MDPI, vol. 15(16), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Soo-Kyeong & Choi, June-Ho & Kim, Jong-Hwa & Kim, Hoyong & Jeong, Hanseob & Choi, In-Gyu, 2020. "Statistical analysis of glucose production from Eucalyptus pellita with individual control of chemical constituents," Renewable Energy, Elsevier, vol. 148(C), pages 298-308.
    2. Andriy Stavytskyy & Ganna Kharlamova & Olena Komendant & Jarosław Andrzejczak & Joanna Nakonieczny, 2021. "Methodology for Calculating the Energy Security Index of the State: Taking into Account Modern Megatrends," Energies, MDPI, vol. 14(12), pages 1-19, June.
    3. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    4. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    5. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    6. Zhao, Xuebing & Liu, Dehua, 2019. "Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining," Applied Energy, Elsevier, vol. 250(C), pages 229-244.
    7. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    8. Islam Mohammed Mahbubul & Miah Himan, 2023. "Prospects of Bioethanol from Agricultural Residues in Bangladesh," Energies, MDPI, vol. 16(12), pages 1-21, June.
    9. Josef Maroušek & Anna Maroušková & Tomáš Zoubek & Petr Bartoš, 2022. "Economic impacts of soil fertility degradation by traces of iron from drinking water treatment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4835-4844, April.
    10. Zhang, Haiyan & Han, Lujia & Dong, Hongmin, 2021. "An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Tian, Shuang-Qi & Zhao, Ren-Yong & Chen, Zhi-Cheng, 2018. "Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 483-489.
    12. Radhakumari, Muktham & Taha, Mohamed & Shahsavari, Esmaeil & Bhargava, Suresh K. & Satyavathi, Bankupalli & Ball, Andrew S., 2017. "Pongamia pinnata seed residue – A low cost inedible resource for on-site/in-house lignocellulases and sustainable ethanol production," Renewable Energy, Elsevier, vol. 103(C), pages 682-687.
    13. Snunkhaem Echaroj & Hwai Chyuan Ong & Xiuhan Chen, 2020. "Simulation of Mixing Intensity Profile for Bioethanol Production via Two-Step Fermentation in an Unbaffled Agitator Reactor," Energies, MDPI, vol. 13(20), pages 1-11, October.
    14. Liu, Ruo-Ying & Lan, Hai-Na & Liu, Zhi-Hua & Li, Bing-Zhi & Yuan, Ying-Jin, 2024. "Microbial valorization of lignin toward coumarins: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    16. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    17. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Qianshi, Song & Wei, Zhang & Xiaowei, Wang & Xiaohan, Wang & Haowen, Li & Zixin, Yang & Yue, Ye & Guangqian, Luo, 2023. "Comprehensive effects of different inorganic elements on initial biomass char-CO2 gasification reactivity in micro fluidised bed reactor: Theoretical modeling and experiment analysis," Energy, Elsevier, vol. 262(PA).
    19. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    20. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s136403212101090x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.