IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6536-d909361.html
   My bibliography  Save this article

A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge

Author

Listed:
  • Georgia-Christina Mitraka

    (Soil and Water Resources Institute, Hellenic Agricultural Organisation-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece
    Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece)

  • Konstantinos N. Kontogiannopoulos

    (Soil and Water Resources Institute, Hellenic Agricultural Organisation-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece)

  • Maria Batsioula

    (Institute for Bio-Economy and Agri-Technology (iBO), Center for Research and Technology-Hellas (CERTH), GR-57001 Thessaloniki, Greece)

  • George F. Banias

    (Institute for Bio-Economy and Agri-Technology (iBO), Center for Research and Technology-Hellas (CERTH), GR-57001 Thessaloniki, Greece)

  • Anastasios I. Zouboulis

    (Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece)

  • Panagiotis G. Kougias

    (Soil and Water Resources Institute, Hellenic Agricultural Organisation-DIMITRA, Thermi, GR-57001 Thessaloniki, Greece)

Abstract

The treatment of municipal wastewater is considered a cornerstone for the protection of public health and environment. However, a major issue derived from this process is the large quantities of produced sewage sludge. Although anaerobic digestion is a widely applied method in Wastewater Treatment Plants (WWTPs) aiming to stabilize the sludge and to recover energy in the form of methane, it is usually limited due to the reduced decomposition efficiency and slow biodegradation rate of this recalcitrant substrate. For this reason, various pretreatment methods have been proposed aiming to modify the sludge structure, solubilize the organic matter, and decrease the crystallinity of sludge so as to accelerate hydrolysis and consequently enhance methane production. The current research is a comprehensive collection of recent advances in pretreatment technologies that can be potentially applied in wastewater treatment facilities. The critical review analysis presented herein reveals the several advantages and drawbacks, as well as the technical opportunities of the pretreatment methods and provides an assessment of their feasibility/applicability from an energetic, environmental, and economic point of view.

Suggested Citation

  • Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6536-:d:909361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6536/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6536/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    2. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    3. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    4. Mirmasoumi, Siamak & Ebrahimi, Sirous & Saray, Rahim Khoshbakhti, 2018. "Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions," Energy, Elsevier, vol. 157(C), pages 707-717.
    5. Cano, R. & Pérez-Elvira, S.I. & Fdz-Polanco, F., 2015. "Energy feasibility study of sludge pretreatments: A review," Applied Energy, Elsevier, vol. 149(C), pages 176-185.
    6. Kor-Bicakci, Gokce & Eskicioglu, Cigdem, 2019. "Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 423-443.
    7. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    8. Gil, A. & Siles, J.A. & Martín, M.A. & Chica, A.F. & Estévez-Pastor, F.S. & Toro-Baptista, E., 2018. "Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge," Renewable Energy, Elsevier, vol. 115(C), pages 917-925.
    9. Wu, Di & Li, Lei & Zhao, Xiaofei & Peng, Yun & Yang, Pingjin & Peng, Xuya, 2019. "Anaerobic digestion: A review on process monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 1-12.
    10. Nges, Ivo Achu & Liu, Jing, 2009. "Effects of anaerobic pre-treatment on the degradation of dewatered-sewage sludge," Renewable Energy, Elsevier, vol. 34(7), pages 1795-1800.
    11. Alsayed Mostafa & Min-Gyun Kim & Seongwon Im & Mo-Kwon Lee & Seoktae Kang & Dong-Hoon Kim, 2020. "Series of Combined Pretreatment Can Affect the Solubilization of Waste-Activated Sludge," Energies, MDPI, vol. 13(16), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    2. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    2. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Hosseini Koupaie, E. & Lin, L. & Bazyar Lakeh, A.A. & Azizi, A. & Dhar, B.R. & Hafez, H. & Elbeshbishy, E., 2021. "Performance evaluation and microbial community analysis of mesophilic and thermophilic sludge fermentation processes coupled with thermal hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Mirsoleimani Azizi, Seyed Mohammad & Haffiez, Nervana & Mostafa, Alsayed & Hussain, Abid & Abdallah, Mohamed & Al-Mamun, Abdullah & Bhatnagar, Amit & Dhar, Bipro Ranjan, 2024. "Low- and high-temperature thermal hydrolysis pretreatment for anaerobic digestion of sludge: Process evaluation and fate of emerging pollutants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    5. Kavitha, S. & Banu, J. Rajesh & Priya, A. Arul & Uan, Do Khac & Yeom, Ick Tae, 2017. "Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility," Applied Energy, Elsevier, vol. 208(C), pages 228-238.
    6. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    7. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    8. Tae-Hoon Kim & Dayeong Song & Jung-Sup Lee & Yeo-Myeong Yun, 2023. "Enhanced Methane Production from Pretreatment of Waste Activated Sludge by Economically Feasible Biocatalysts," Energies, MDPI, vol. 16(1), pages 1-11, January.
    9. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    10. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    11. Fernández-Polanco, D. & Tatsumi, H., 2016. "Optimum energy integration of thermal hydrolysis through pinch analysis," Renewable Energy, Elsevier, vol. 96(PB), pages 1093-1102.
    12. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    13. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    15. Elagroudy, S. & Radwan, A.G. & Banadda, N. & Mostafa, Nagwan G. & Owusu, P.A. & Janajreh, I., 2020. "Mathematical models comparison of biogas production from anaerobic digestion of microwave pretreated mixed sludge," Renewable Energy, Elsevier, vol. 155(C), pages 1009-1020.
    16. Mariana Ferdeș & Bianca Ștefania Zăbavă & Gigel Paraschiv & Mariana Ionescu & Mirela Nicoleta Dincă & Georgiana Moiceanu, 2022. "Food Waste Management for Biogas Production in the Context of Sustainable Development," Energies, MDPI, vol. 15(17), pages 1-27, August.
    17. Kor-Bicakci, Gokce & Eskicioglu, Cigdem, 2019. "Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 423-443.
    18. Wang, Jie & Li, Yongmei, 2016. "Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion," Applied Energy, Elsevier, vol. 183(C), pages 1123-1132.
    19. Chen, Yinguang & Liu, Hui & Zheng, Xiong & Wang, Xin & Wu, Jiang, 2017. "New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process," Applied Energy, Elsevier, vol. 196(C), pages 190-198.
    20. Fernández-Polanco, D. & Aagesen, E. & Fdz-Polanco, M. & Pérez-Elvira, S.I., 2021. "Comparative analysis of the thermal hydrolysis integration within WWTPs as a pre-, inter- or post-treatment for anaerobic digestion of sludge," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6536-:d:909361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.