IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp329-340.html
   My bibliography  Save this article

Pyrolysis kinetics and product distribution of α-cellulose: Effect of potassium and calcium impregnation

Author

Listed:
  • Tran, Quoc Khanh
  • Vo, Thuan Anh
  • Ly, Hoang Vu
  • Kwon, Byeongwan
  • Kim, Kwang Ho
  • Kim, Seung-Soo
  • Kim, Jinsoo

Abstract

Cellulose accounts for the largest proportion of lignocellulosic biomass. Herein, experimental and simulation studies are used to deeply understand the kinetic characteristics of the thermal decomposition of α-cellulose. The simulated data is in good agreement with the experimental data in the aspects of the conversion and the conversion rate versus temperature. The decomposition of α-cellulose, mainly occurring at 270–420 °C, induced an apparent activation energy ranging from 175.42 kJ/mol to 197.73 kJ/mol at a conversion of 10–90%. With 0.1–0.2 wt% K or Ca impregnation into the α-cellulose, the mean activation energy for pyrolysis was lowered (from 181.47 kJ/mol (for α-cellulose) to 141.11 kJ/mol (for 0.2 wt% K/α-cellulose) and 159.46 kJ/mol (for 0.1 wt% Ca/α-cellulose)) and higher amounts of liquid and gas products were produced. Furthermore, the addition of potassium and calcium increased the production of lower molecular weight components, such as furfural and its derivatives. The kinetic parameters of the α-cellulose pyrolysis were determined based on a nonlinear least-squares regression of the experimental data assuming first-order kinetics and correlated with the simulated result. The kinetic rate constants indicate that the predominant reaction pathway is from α-cellulose into a liquid product, rather than from α-cellulose into a gas product.

Suggested Citation

  • Tran, Quoc Khanh & Vo, Thuan Anh & Ly, Hoang Vu & Kwon, Byeongwan & Kim, Kwang Ho & Kim, Seung-Soo & Kim, Jinsoo, 2022. "Pyrolysis kinetics and product distribution of α-cellulose: Effect of potassium and calcium impregnation," Renewable Energy, Elsevier, vol. 181(C), pages 329-340.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:329-340
    DOI: 10.1016/j.renene.2021.08.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121012660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ly, Hoang Vu & Park, Jeong Woo & Kim, Seung-Soo & Hwang, Hyun Tae & Kim, Jinsoo & Woo, Hee Chul, 2020. "Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil," Renewable Energy, Elsevier, vol. 149(C), pages 1434-1445.
    2. Vo, The Ky & Ly, Hoang Vu & Lee, Ok Kyung & Lee, Eun Yeol & Kim, Chul Ho & Seo, Jeong-Woo & Kim, Jinsoo & Kim, Seung-Soo, 2017. "Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101," Energy, Elsevier, vol. 118(C), pages 369-376.
    3. Ly, Hoang Vu & Kim, Jinsoo & Kim, Seung-Soo, 2013. "Pyrolysis characteristics and kinetics of palm fiber in a closed reactor," Renewable Energy, Elsevier, vol. 54(C), pages 91-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gözke, Gözde, 2022. "Kinetic and thermodynamic analyses based on thermogravimetric pyrolysis of watermelon seed by isoconversional and master plots methods," Renewable Energy, Elsevier, vol. 201(P1), pages 916-927.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Dayu & Hu, Shuang & Liu, Weishan & Wang, Xiaoning & Jiang, Haifeng & Dong, Nanhang, 2020. "Pyrolysis of oleaginous yeast biomass from wastewater treatment: Kinetics analysis and biocrude characterization," Renewable Energy, Elsevier, vol. 150(C), pages 831-839.
    2. Xing, Jiangkuan & Wang, Haiou & Luo, Kun & Wang, Shuai & Bai, Yun & Fan, Jianren, 2019. "Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)," Renewable Energy, Elsevier, vol. 136(C), pages 104-114.
    3. Tong Wang & Tuo Zhou & Chaoran Li & Qiang Song & Man Zhang & Hairui Yang, 2024. "Development Status and Prospects of Biomass Energy in China," Energies, MDPI, vol. 17(17), pages 1-25, September.
    4. Kong, Wenwen & Shen, Boxiong & Ma, Jiao & Kong, Jia & Feng, Shuo & Wang, Zhuozhi & Xiong, Lifu, 2022. "Pyrolysis of Spirulina platensis, Tetradesmus obliquus and Chlorella vulgaris by TG-FTIR and Py-GC/MS: Kinetic analysis and pyrolysis behaviour," Energy, Elsevier, vol. 244(PB).
    5. Ly, Hoang Vu & Kim, Seung-Soo & Woo, Hee Chul & Choi, Jae Hyung & Suh, Dong Jin & Kim, Jinsoo, 2015. "Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production," Energy, Elsevier, vol. 93(P2), pages 1436-1446.
    6. Ly, Hoang Vu & Park, Jeong Woo & Kim, Seung-Soo & Hwang, Hyun Tae & Kim, Jinsoo & Woo, Hee Chul, 2020. "Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil," Renewable Energy, Elsevier, vol. 149(C), pages 1434-1445.
    7. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Liu, Jie & Zhang, Zonghui & Zhang, Mingrui & Kaya, Madalina Georgiana Albu & Wang, Fang & Tang, Keyong, 2024. "Co-pyrolysis of chrome-tanned leather shavings with wheat straw: Thermal behavior, kinetics and pyrolysis products," Energy, Elsevier, vol. 301(C).
    9. Chen, Chunxiang & Zhao, Shiyi & Qiu, Hongfu & Yang, Ronglin & Wan, Shouqiang & He, Shiyuan & Shi, Haosen & Zhu, Qi, 2024. "Characterization and bio-oil analysis of microalgae and waste tires by microwave catalytic co-pyrolysis," Energy, Elsevier, vol. 302(C).
    10. Azizi, Kolsoom & Moshfegh Haghighi, Ali & Keshavarz Moraveji, Mostafa & Olazar, Martin & Lopez, Gartzen, 2019. "Co-pyrolysis of binary and ternary mixtures of microalgae, wood and waste tires through TGA," Renewable Energy, Elsevier, vol. 142(C), pages 264-271.
    11. Gong, Zhiqiang & Fang, Peiwen & Wang, Zhenbo & Li, Qiang & Li, Xiaoyu & Meng, Fanzhi & Zhang, Haoteng & Liu, Lei, 2020. "Catalytic pyrolysis of chemical extraction residue from microalgae biomass," Renewable Energy, Elsevier, vol. 148(C), pages 712-719.
    12. Shao, Shanshan & Zhang, Pengfei & Xiang, Xianliang & Li, Xiaohua & Zhang, Huiyan, 2022. "Promoted ketonization of bagasse pyrolysis gas over red mud-based oxides," Renewable Energy, Elsevier, vol. 190(C), pages 11-18.
    13. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    14. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    15. Gu, Tianbao & Fu, Zhufu & Berning, Torsten & Li, Xuantian & Yin, Chungen, 2021. "A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration," Energy, Elsevier, vol. 225(C).
    16. Zhang, Jun & Li, Chengyu & Yuan, Haoran & Chen, Yong, 2022. "Enhancement of aromatics production via cellulose fast pyrolysis over Ru modified hierarchical zeolites," Renewable Energy, Elsevier, vol. 184(C), pages 280-290.
    17. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    18. Tianbao Gu & Torsten Berning & Chungen Yin, 2021. "Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis," Energies, MDPI, vol. 14(18), pages 1-12, September.
    19. Bhattacharyya, Munmi & Shadangi, Krushna Prasad & Purkayastha, Rishiraj & Mahanta, Pinakeswar & Mohanty, Kaustubha, 2024. "Catalytic upgradation of pyrolytic products by catalytic pyrolysis of sawdust using a synthesized composite catalyst of NiO and Ni (II) aluminates," Renewable Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:329-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.