IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics0360544221003820.html
   My bibliography  Save this article

A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration

Author

Listed:
  • Gu, Tianbao
  • Fu, Zhufu
  • Berning, Torsten
  • Li, Xuantian
  • Yin, Chungen

Abstract

A kinetic model for the prediction of the conversion rate is crucial for research and development of biomass pyrolysis. The complexity of the existing kinetic studies and the diversity in pyrolysis kinetic data largely compromise the application of kinetic models. For the purpose of developing a generalized kinetic model, in this paper, we derive a universal description for all the common reaction mechanisms of solid fuels pyrolysis, among which the first-order reactions can be described as standardized general extreme value distribution. Based on the universal description, a simplified kinetic model with only one kinetic parameter is proposed. Then, we perform an experimental study of cellulose and poplar wood pyrolysis in order to validate the new model and to demonstrate its usefulness. The prediction results of the new model are very consistent with those from the conventional Arrhenius model and also agree well with the experimental data. Afterwards, the new model is applied to evaluate the kinetics for poplar wood pyrolysis, and comparisons between our model results and the commonly used Friedman method in terms of accuracy and applicability are shown. The new model also illustrates that the activation energies vary remarkably with the conversion degree and heating rate.

Suggested Citation

  • Gu, Tianbao & Fu, Zhufu & Berning, Torsten & Li, Xuantian & Yin, Chungen, 2021. "A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221003820
    DOI: 10.1016/j.energy.2021.120133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    2. Heidari, Mohammad & Salaudeen, Shakirudeen & Arku, Precious & Acharya, Bishnu & Tasnim, Syeda & Dutta, Animesh, 2021. "Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions," Energy, Elsevier, vol. 214(C).
    3. Sharma, Abhishek & Pareek, Vishnu & Zhang, Dongke, 2015. "Biomass pyrolysis—A review of modelling, process parameters and catalytic studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1081-1096.
    4. Fang, Shiwen & Yu, Zhaosheng & Ma, Xiaoqian & Lin, Yan & Chen, Lin & Liao, Yanfen, 2018. "Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)," Energy, Elsevier, vol. 143(C), pages 517-532.
    5. Siddiqi, Hammad & Kumari, Usha & Biswas, Subrata & Mishra, Asmita & Meikap, B.C., 2020. "A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste," Energy, Elsevier, vol. 204(C).
    6. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    7. Vo, The Ky & Ly, Hoang Vu & Lee, Ok Kyung & Lee, Eun Yeol & Kim, Chul Ho & Seo, Jeong-Woo & Kim, Jinsoo & Kim, Seung-Soo, 2017. "Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101," Energy, Elsevier, vol. 118(C), pages 369-376.
    8. Almazrouei, Manar & Janajreh, Isam, 2020. "Model-fitting approach to kinetic analysis of non-isothermal pyrolysis of pure and crude glycerol," Renewable Energy, Elsevier, vol. 145(C), pages 1693-1708.
    9. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    10. Wang, Shurong & Dai, Gongxin & Ru, Bin & Zhao, Yuan & Wang, Xiaoliu & Xiao, Gang & Luo, Zhongyang, 2017. "Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose," Energy, Elsevier, vol. 120(C), pages 864-871.
    11. López-González, D. & Avalos-Ramirez, A. & Giroir-Fendler, A. & Godbout, S. & Fernandez-Lopez, M. & Sanchez-Silva, L. & Valverde, J.L., 2015. "Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry," Energy, Elsevier, vol. 90(P2), pages 1626-1635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jidan & Ji, Wenhui & Yuan, Yanping & Nan, Wei & Yuan, Wenhui, 2024. "Pyrolysis characteristics and kinetics study of four typical trolley case materials in passenger trains," Energy, Elsevier, vol. 292(C).
    2. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    3. Tianbao Gu & Torsten Berning & Chungen Yin, 2021. "Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis," Energies, MDPI, vol. 14(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.
    2. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
    3. Mishra, Asmita & Siddiqi, Hammad & Kumari, Usha & Behera, Ipsita Dipamitra & Mukherjee, Subhrajit & Meikap, B.C., 2021. "Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Tianbao Gu & Torsten Berning & Chungen Yin, 2021. "Application of a New Statistical Model for the Description of Solid Fuel Decomposition in the Analysis of Artemisia apiacea Pyrolysis," Energies, MDPI, vol. 14(18), pages 1-12, September.
    5. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    6. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    7. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    8. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    9. Tabet, F. & Gökalp, I., 2015. "Review on CFD based models for co-firing coal and biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1101-1114.
    10. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Yi, Honghong & Yang, Zhongyu & Tang, Xiaolong & Zhao, Shunzheng & Gao, Fengyu & Wang, Jiangen & Huang, Yonghai & Yang, Kun & Shi, Yiran & Xie, Xizhou, 2018. "Variations of apparent activation energy based on thermodynamics analysis of zeolitic imidazolate frameworks including pyrolysis and combustion," Energy, Elsevier, vol. 151(C), pages 782-798.
    12. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    13. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    14. Fang, Shiwen & Deng, Zhengbing & Lin, Yan & Huang, Zhen & Ding, Lixing & Deng, Lisheng & Huang, Hongyu, 2021. "Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier," Energy, Elsevier, vol. 228(C).
    15. Zhang, Zhiping & Tahir, Nadeem & Li, Yameng & Zhang, Tian & Zhu, Shengnan & Zhang, Quanguo, 2019. "Tailoring of structural and optical parameters of corncobs through ball milling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 298-304.
    16. Yu, Dayu & Hu, Shuang & Liu, Weishan & Wang, Xiaoning & Jiang, Haifeng & Dong, Nanhang, 2020. "Pyrolysis of oleaginous yeast biomass from wastewater treatment: Kinetics analysis and biocrude characterization," Renewable Energy, Elsevier, vol. 150(C), pages 831-839.
    17. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    18. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    19. Yu Ji & Qiang Yao & Weihong Cao & Yueying Zhao, 2021. "A Probable Origin of Dibenzothiophenes in Coals and Oils," Energies, MDPI, vol. 14(1), pages 1-16, January.
    20. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s0360544221003820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.