IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp914-936.html
   My bibliography  Save this article

In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass

Author

Listed:
  • Nogueira, Cleitiane da Costa
  • Padilha, Carlos Eduardo de Araújo
  • Dantas, Júlia Maria de Medeiros
  • Medeiros, Fábio Gonçalves Macêdo de
  • Guilherme, Alexandre de Araújo
  • Souza, Domingos Fabiano de Santana
  • Santos, Everaldo Silvino dos

Abstract

The bioalcohol production (ethanol and butanol) from lignocellulosic biomass has some techno-economic limitations nowadays. Detoxification technologies can efficiently remove fermentation inhibitors (such as furan aldehydes, aliphatic acids, and phenolic compounds) to increase the bioalcohol titers. However, the addition of more steps before fermentation increases the complexity of the production scheme and reduces the profit margin. Process intensification concepts have been disseminated as a critical factor for the success of biotechnological processes, including bioalcohol production. Thus, this review discusses the main inhibitors from lignocellulosic biomass and the in-situ technologies used to minimize the yeast inhibition in hydrolysates and slurries. In-situ detoxification strategies involve different fundamentals, but they have the unanimity of allowing fermentation to be carried out concurrently. They are usually based on the establishment of a microbial consortium as well as the addition of reducing agents, polymers, solvents and adsorbents. Also, in-situ product recovery methods have been developed to minimize energy consumption in downstream processing.

Suggested Citation

  • Nogueira, Cleitiane da Costa & Padilha, Carlos Eduardo de Araújo & Dantas, Júlia Maria de Medeiros & Medeiros, Fábio Gonçalves Macêdo de & Guilherme, Alexandre de Araújo & Souza, Domingos Fabiano de S, 2021. "In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 180(C), pages 914-936.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:914-936
    DOI: 10.1016/j.renene.2021.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pazhamalai Anbarasan & Zachary C. Baer & Sanil Sreekumar & Elad Gross & Joseph B. Binder & Harvey W. Blanch & Douglas S. Clark & F. Dean Toste, 2012. "Integration of chemical catalysis with extractive fermentation to produce fuels," Nature, Nature, vol. 491(7423), pages 235-239, November.
    2. Zhang, Qiuzhuo & Huang, Huiqin & Han, Hui & Qiu, Zhen & Achal, Varenyam, 2017. "Stimulatory effect of in-situ detoxification on bioethanol production by rice straw," Energy, Elsevier, vol. 135(C), pages 32-39.
    3. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.
    4. Li, Yi-Jing & Li, Han-Yin & Sun, Shao-Ni & Sun, Run-Cang, 2019. "Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production," Renewable Energy, Elsevier, vol. 134(C), pages 228-234.
    5. Kunnakorn, D. & Rirksomboon, T. & Siemanond, K. & Aungkavattana, P. & Kuanchertchoo, N. & Chuntanalerg, P. & Hemra, K. & Kulprathipanja, S. & James, R.B. & Wongkasemjit, S., 2013. "Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water–ethanol separation," Renewable Energy, Elsevier, vol. 51(C), pages 310-316.
    6. Mariano, Adriano Pinto & Filho, Rubens Maciel & Ezeji, Thaddeus Chukwuemeka, 2012. "Energy requirements during butanol production and in situ recovery by cyclic vacuum," Renewable Energy, Elsevier, vol. 47(C), pages 183-187.
    7. Saini, Jitendra Kumar & Patel, Anil Kumar & Adsul, Mukund & Singhania, Reeta Rani, 2016. "Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 29-42.
    8. Van Hecke, Wouter & Joossen-Meyvis, Eva & Beckers, Herman & De Wever, Heleen, 2018. "Prospects & potential of biobutanol production integrated with organophilic pervaporation – A techno-economic assessment," Applied Energy, Elsevier, vol. 228(C), pages 437-449.
    9. Landaeta, Roberto & Aroca, Germán & Acevedo, Fernando & Teixeira, José A. & Mussatto, Solange I., 2013. "Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation," Applied Energy, Elsevier, vol. 102(C), pages 124-130.
    10. Nikki Sjulander & Timo Kikas, 2020. "Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review," Energies, MDPI, vol. 13(18), pages 1-20, September.
    11. Cannella, David & Sveding, Per Viktor & Jørgensen, Henning, 2014. "PEI detoxification of pretreated spruce for high solids ethanol fermentation," Applied Energy, Elsevier, vol. 132(C), pages 394-403.
    12. Supansa Youngsukkasem & Hamidreza Barghi & Sudip K. Rakshit & Mohammad J. Taherzadeh, 2013. "Rapid Biogas Production by Compact Multi-Layer Membrane Bioreactor: Efficiency of Synthetic Polymeric Membranes," Energies, MDPI, vol. 6(12), pages 1-14, November.
    13. Fan, Senqing & Xiao, Zeyi & Li, Minghai & Li, Sizhong, 2016. "Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production," Applied Energy, Elsevier, vol. 179(C), pages 939-947.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caporusso, Antonio & De Bari, Isabella & Liuzzi, Federico & Albergo, Roberto & Valerio, Vito & Viola, Egidio & Pietrafesa, Rocchina & Siesto, Gabriella & Capece, Angela, 2023. "Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels," Renewable Energy, Elsevier, vol. 202(C), pages 184-195.
    2. Du, Ran & Li, Chong & Lin, Weichao & Lin, Carol Sze Ki & Yan, Jianbin, 2022. "Domesticating a bacterial consortium for efficient lignocellulosic biomass conversion," Renewable Energy, Elsevier, vol. 189(C), pages 359-368.
    3. Zhao, Weihua & Yan, Junhao & Gao, Suya & Lee, Timothy H. & Li, Xiangrong, 2022. "The combustion and emission characteristics of a common-rail diesel engine fueled with diesel and higher alcohols blends with a high blend ratio," Energy, Elsevier, vol. 261(PB).
    4. Wagner, Evelyn & Sierra-Ibarra, Estefanía & Rojas, Natalia L. & Martinez, Alfredo, 2022. "One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04," Renewable Energy, Elsevier, vol. 189(C), pages 717-725.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Xiaoxiao & Zhai, Rui & Li, Haixiang & Li, Chen & Deng, Qiufeng & Wu, Xuelan & Jin, Mingjie, 2023. "Binary additives for in-situ mitigating the inhibitory effect of lignin-derived phenolics on enzymatic hydrolysis of lignocellulose: Enhanced performance and synergistic mechanism," Energy, Elsevier, vol. 282(C).
    2. Nikki Sjulander & Timo Kikas, 2020. "Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review," Energies, MDPI, vol. 13(18), pages 1-20, September.
    3. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Usmani, Zeba & Sharma, Minaxi & Awasthi, Abhishek Kumar & Lukk, Tiit & Tuohy, Maria G. & Gong, Liang & Nguyen-Tri, Phuong & Goddard, Alan D. & Bill, Roslyn M. & Nayak, S.Chandra & Gupta, Vijai Kumar, 2021. "Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Peerawat Wongsurakul & Mutsee Termtanun & Worapon Kiatkittipong & Jun Wei Lim & Kunlanan Kiatkittipong & Prasert Pavasant & Izumi Kumakiri & Suttichai Assabumrungrat, 2022. "Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria," Energies, MDPI, vol. 15(9), pages 1-53, April.
    6. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Libutti, Angela, 2018. "Agricultural “greening” and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy)," Land Use Policy, Elsevier, vol. 70(C), pages 591-600.
    8. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    9. Natalia Stefania Piotrowska & Stanisław Zbigniew Czachorowski & Mariusz Jerzy Stolarski, 2020. "Ground Beetles ( Carabidae ) in the Short-Rotation Coppice Willow and Poplar Plants—Synergistic Benefits System," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
    10. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    11. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    12. Gamborg, Christian & Anker, Helle Tegner & Sandøe, Peter, 2014. "Ethical and legal challenges in bioenergy governance: Coping with value disagreement and regulatory complexity," Energy Policy, Elsevier, vol. 69(C), pages 326-333.
    13. Sabarathinam Shanmugam & Anjana Hari & Arivalagan Pugazhendhi & Timo Kikas, 2023. "Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production," Energies, MDPI, vol. 16(13), pages 1-24, June.
    14. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    15. Fedorova, Elena & Pongrácz, Eva, 2019. "Cumulative social effect assessment framework to evaluate the accumulation of social sustainability benefits of regional bioenergy value chains," Renewable Energy, Elsevier, vol. 131(C), pages 1073-1088.
    16. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    17. Lorenzo Di Lucia & Barbara Ribeiro, 2018. "Enacting Responsibilities in Landscape Design: The Case of Advanced Biofuels," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    18. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    19. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Giorgia De Guido & Chiara Monticelli & Elvira Spatolisano & Laura Annamaria Pellegrini, 2021. "Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer," Energies, MDPI, vol. 14(17), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:914-936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.