IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp124-130.html
   My bibliography  Save this article

Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation

Author

Listed:
  • Landaeta, Roberto
  • Aroca, Germán
  • Acevedo, Fernando
  • Teixeira, José A.
  • Mussatto, Solange I.

Abstract

The ethanol production from lignocellulosic feedstocks is considered a promising strategy to increase global production of biofuels without impacting food supplies. However, some compounds released during the hydrolysis of lignocellulosic materials are toxic for the microbial metabolism, causing low ethanol yield and productivity during the fermentation. As an attempt to overcome this problem, the present study evaluated the adaptation of a flocculent strain of Saccharomyces cerevisiae (NRRL Y-265) to several inhibitory compounds usually found in lignocellulosic hydrolysates (acetic acid, furfural, hydroxymethylfurfural, vanillin, syringaldehyde, and hydroxybenzoic acid), aiming to minimize their negative effects on yeast metabolism, maximizing the ethanol production as a consequence. Cell recycle batch fermentation (CRBF) was performed during 39 consecutive days, using five different fermentation media with sequential increase in the concentration of inhibitory compounds, simulating the composition of lignocellulosic hydrolysates. This strategy allowed obtaining a yeast strain with increased ethanol volumetric productivity and growth rate (10% and 70% respectively, over parent strain) able to produce ethanol with better results when cultivated in glucose-supplemented steam-exploded eucalyptus hydrolysate.

Suggested Citation

  • Landaeta, Roberto & Aroca, Germán & Acevedo, Fernando & Teixeira, José A. & Mussatto, Solange I., 2013. "Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation," Applied Energy, Elsevier, vol. 102(C), pages 124-130.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:124-130
    DOI: 10.1016/j.apenergy.2012.06.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191200493X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.06.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nogueira, Cleitiane da Costa & Padilha, Carlos Eduardo de Araújo & Dantas, Júlia Maria de Medeiros & Medeiros, Fábio Gonçalves Macêdo de & Guilherme, Alexandre de Araújo & Souza, Domingos Fabiano de S, 2021. "In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 180(C), pages 914-936.
    2. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
    4. Nikki Sjulander & Timo Kikas, 2020. "Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review," Energies, MDPI, vol. 13(18), pages 1-20, September.
    5. Queiroz, Sarah S. & Jofre, Fanny M. & Mussatto, Solange I. & Felipe, Maria das Graças A., 2022. "Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:124-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.