Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
- Raud, M. & Krennhuber, K. & Jäger, A. & Kikas, T., 2019. "Nitrogen explosive decompression pre-treatment: An alternative to steam explosion," Energy, Elsevier, vol. 177(C), pages 175-182.
- Landaeta, Roberto & Aroca, Germán & Acevedo, Fernando & Teixeira, José A. & Mussatto, Solange I., 2013. "Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation," Applied Energy, Elsevier, vol. 102(C), pages 124-130.
- Cannella, David & Sveding, Per Viktor & Jørgensen, Henning, 2014. "PEI detoxification of pretreated spruce for high solids ethanol fermentation," Applied Energy, Elsevier, vol. 132(C), pages 394-403.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nogueira, Cleitiane da Costa & Padilha, Carlos Eduardo de Araújo & Dantas, Júlia Maria de Medeiros & Medeiros, Fábio Gonçalves Macêdo de & Guilherme, Alexandre de Araújo & Souza, Domingos Fabiano de S, 2021. "In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 180(C), pages 914-936.
- Jiang, Xiaoxiao & Zhai, Rui & Li, Haixiang & Li, Chen & Deng, Qiufeng & Wu, Xuelan & Jin, Mingjie, 2023. "Binary additives for in-situ mitigating the inhibitory effect of lignin-derived phenolics on enzymatic hydrolysis of lignocellulose: Enhanced performance and synergistic mechanism," Energy, Elsevier, vol. 282(C).
- Giorgia De Guido & Chiara Monticelli & Elvira Spatolisano & Laura Annamaria Pellegrini, 2021. "Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer," Energies, MDPI, vol. 14(17), pages 1-18, September.
- Rosen, Yan & Maslennikov, Alona & Trabelcy, Beny & Gerchman, Yoram & Mamane, Hadas, 2022. "Short ozonation for effective removal and detoxification of fermentation inhibitors resulting from thermal pretreatment," Renewable Energy, Elsevier, vol. 189(C), pages 1407-1418.
- Rooni, V. & Sjulander, N. & Cristobal-Sarramian, A. & Raud, M. & Rocha-Meneses, Lisandra & Kikas, T., 2021. "The efficiency of nitrogen explosion pretreatment on common aspen – Populus tremula: N2– VS steam explosion," Energy, Elsevier, vol. 220(C).
- Ma, Yan-Chao & Zheng, Yang & Wang, Li-Hua & Sun, Bao-Guo & Zhao, Mou-Ming & Huang, Ming-Quan & Wu, Ji-Hong & Li, He-He & Sun, Xiao-Tao, 2023. "Integrated distilled spent grain with husk utilization: Current situation, trend, and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
- Nikki Sjulander & Timo Kikas, 2022. "Two-Step Pretreatment of Lignocellulosic Biomass for High-Sugar Recovery from the Structural Plant Polymers Cellulose and Hemicellulose," Energies, MDPI, vol. 15(23), pages 1-18, November.
- Peerawat Wongsurakul & Mutsee Termtanun & Worapon Kiatkittipong & Jun Wei Lim & Kunlanan Kiatkittipong & Prasert Pavasant & Izumi Kumakiri & Suttichai Assabumrungrat, 2022. "Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria," Energies, MDPI, vol. 15(9), pages 1-53, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nogueira, Cleitiane da Costa & Padilha, Carlos Eduardo de Araújo & Dantas, Júlia Maria de Medeiros & Medeiros, Fábio Gonçalves Macêdo de & Guilherme, Alexandre de Araújo & Souza, Domingos Fabiano de S, 2021. "In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 180(C), pages 914-936.
- Rooni, V. & Sjulander, N. & Cristobal-Sarramian, A. & Raud, M. & Rocha-Meneses, Lisandra & Kikas, T., 2021. "The efficiency of nitrogen explosion pretreatment on common aspen – Populus tremula: N2– VS steam explosion," Energy, Elsevier, vol. 220(C).
- Merve Nazli Borand & Asli Isler Kaya & Filiz Karaosmanoglu, 2020. "Saccharification Yield through Enzymatic Hydrolysis of the Steam-Exploded Pinewood," Energies, MDPI, vol. 13(17), pages 1-12, September.
- Kalyani, Dayanand Chandrahas & Zamanzadeh, Mirzaman & Müller, Gerdt & Horn, Svein J., 2017. "Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion," Applied Energy, Elsevier, vol. 193(C), pages 210-219.
- Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
- Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Chen, Chenghan & Wang, Yanwei & Zhu, Qili & Tan, Furong & He, Mingxiong & Hu, Guoquan, 2024. "Enhancing bioethanol conversion from straw by a novel circulation promotion method," Energy, Elsevier, vol. 307(C).
- Queiroz, Sarah S. & Jofre, Fanny M. & Mussatto, Solange I. & Felipe, Maria das Graças A., 2022. "Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Al Afif, Rafat & Wendland, Martin & Amon, Thomas & Pfeifer, Christoph, 2020. "Supercritical carbon dioxide enhanced pre-treatment of cotton stalks for methane production," Energy, Elsevier, vol. 194(C).
- Rocha-Meneses, Lisandra & Raud, Merlin & Orupõld, Kaja & Kikas, Timo, 2019. "Potential of bioethanol production waste for methane recovery," Energy, Elsevier, vol. 173(C), pages 133-139.
- Lisandra Rocha-Meneses & Jorge A Ferreira & Nemailla Bonturi & Kaja Orupõld & Timo Kikas, 2019. "Enhancing Bioenergy Yields from Sequential Bioethanol and Biomethane Production by Means of Solid–Liquid Separation of the Substrates," Energies, MDPI, vol. 12(19), pages 1-16, September.
- Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Domínguez, Elena & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2017. "Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme," Applied Energy, Elsevier, vol. 187(C), pages 777-789.
- Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
- Peerawat Wongsurakul & Mutsee Termtanun & Worapon Kiatkittipong & Jun Wei Lim & Kunlanan Kiatkittipong & Prasert Pavasant & Izumi Kumakiri & Suttichai Assabumrungrat, 2022. "Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria," Energies, MDPI, vol. 15(9), pages 1-53, April.
- Jiang, Xiaoxiao & Zhai, Rui & Li, Haixiang & Li, Chen & Deng, Qiufeng & Wu, Xuelan & Jin, Mingjie, 2023. "Binary additives for in-situ mitigating the inhibitory effect of lignin-derived phenolics on enzymatic hydrolysis of lignocellulose: Enhanced performance and synergistic mechanism," Energy, Elsevier, vol. 282(C).
- Chauhan, Amisha & Trembley, Jon & Wrobel, Luiz C. & Jouhara, Hussam, 2019. "Experimental and CFD validation of the thermal performance of a cryogenic batch freezer with the effect of loading," Energy, Elsevier, vol. 171(C), pages 77-94.
- Raud, M. & Krennhuber, K. & Jäger, A. & Kikas, T., 2019. "Nitrogen explosive decompression pre-treatment: An alternative to steam explosion," Energy, Elsevier, vol. 177(C), pages 175-182.
- Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
More about this item
Keywords
bioethanol; detoxification; hydrolysates; lignocellulosic inhibitors; pretreatment; saccharomyces cerevisiae; yeast;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4751-:d:412477. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.