IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4016-d180073.html
   My bibliography  Save this article

Enacting Responsibilities in Landscape Design: The Case of Advanced Biofuels

Author

Listed:
  • Lorenzo Di Lucia

    (Centre for Environmental Policy, Imperial College London, Weeks Building, 16-18 Prince’s Gardens, London SW7 1BA, UK)

  • Barbara Ribeiro

    (Manchester Institute of Innovation Research, Alliance Manchester Business School, University of Manchester, Booth St East, Manchester, England M13 9SS, UK)

Abstract

In this article, we explore the opportunities and challenges of landscape approaches through the lens of responsible research and innovation (RRI). We use the case of transport biofuels to reflect on the capacity of landscape approaches to support the governance of emerging technologies. The case study, developed in the region of Sardinia, Italy, consists of a landscape design process for the implementation of biofuel technologies that rely on the use of non-food dedicated crops and agricultural residues. By using non-food feedstocks, the biofuel project aims to avoid competition with food production and achieve sustainability goals. Through the discussion of key dimensions of RRI in relation to this case, the article puts forward a set of critical aspects of landscape design processes that require further attention from theorists and practitioners in the field of landscape-based planning. These include the power imbalance that exists between the diverse actors involved in project activities, a need for improving the flexibility of the configuration of socio-technical systems, revising assumptions on ‘valid’ knowledge, and improving the deliberative component of planning processes.

Suggested Citation

  • Lorenzo Di Lucia & Barbara Ribeiro, 2018. "Enacting Responsibilities in Landscape Design: The Case of Advanced Biofuels," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4016-:d:180073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomei, Julia & Upham, Paul, 2009. "Argentinean soy-based biodiesel: An introduction to production and impacts," Energy Policy, Elsevier, vol. 37(10), pages 3890-3898, October.
    2. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.
    3. Kerstin Cuhls, 2003. "From forecasting to foresight processes-new participative foresight activities in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(2-3), pages 93-111.
    4. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    5. Di Lucia, Lorenzo & Usai, Domenico & Woods, Jeremy, 2018. "Designing landscapes for sustainable outcomes – The case of advanced biofuels," Land Use Policy, Elsevier, vol. 73(C), pages 434-446.
    6. Ida-Elisabeth Andersen & Birgit Jæger, 1999. "Scenario workshops and consensus conferences: Towards more democratic decision-making," Science and Public Policy, Oxford University Press, vol. 26(5), pages 331-340, October.
    7. Vassilis Daioglou & Jonathan C. Doelman & Elke Stehfest & Christoph Müller & Birka Wicke & Andre Faaij & Detlef P. van Vuuren, 2017. "Greenhouse gas emission curves for advanced biofuel supply chains," Nature Climate Change, Nature, vol. 7(12), pages 920-924, December.
    8. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    9. Alkimim, Akenya & Clarke, Keith C., 2018. "Land use change and the carbon debt for sugarcane ethanol production in Brazil," Land Use Policy, Elsevier, vol. 72(C), pages 65-73.
    10. Paul Opdam, 2018. "Exploring the Role of Science in Sustainable Landscape Management. An Introduction to the Special Issue," Sustainability, MDPI, vol. 10(2), pages 1-6, January.
    11. Thomas C. Brown, 1984. "The Concept of Value in Resource Allocation," Land Economics, University of Wisconsin Press, vol. 60(3), pages 231-246.
    12. Anselm Eisentraut, 2010. "Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries," IEA Energy Papers 2010/1, OECD Publishing.
    13. Dale, Virginia H. & Kline, Keith L. & Buford, Marilyn A. & Volk, Timothy A. & Tattersall Smith, C. & Stupak, Inge, 2016. "Incorporating bioenergy into sustainable landscape designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1158-1171.
    14. Chris Dalglish & Alan Leslie & Kenny Brophy & Gavin Macgregor, 2018. "Justice, development and the land: the social context of Scotland’s energy transition," Landscape Research, Taylor & Francis Journals, vol. 43(4), pages 517-528, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Traverso L. & Mazzoli E. & Miller C. & Pulighe G. & Perelli C. & Morese M. M. & Branca G., 2021. "Cost Benefit and Risk Analysis of Low iLUC Bioenergy Production in Europe Using Monte Carlo Simulation," Energies, MDPI, vol. 14(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    3. Di Lucia, Lorenzo & Usai, Domenico & Woods, Jeremy, 2018. "Designing landscapes for sustainable outcomes – The case of advanced biofuels," Land Use Policy, Elsevier, vol. 73(C), pages 434-446.
    4. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Libutti, Angela, 2018. "Agricultural “greening” and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy)," Land Use Policy, Elsevier, vol. 70(C), pages 591-600.
    5. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    7. Arias, Ana & Nika, Chrysanthi-Elisabeth & Vasilaki, Vasileia & Feijoo, Gumersindo & Moreira, Maria Teresa & Katsou, Evina, 2024. "Assessing the future prospects of emerging technologies for shipping and aviation biofuels: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Michailos, Stavros & Parker, David & Webb, Colin, 2017. "Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation," MPRA Paper 87640, University Library of Munich, Germany.
    9. Holland, Robert A. & Scott, Kate & Hinton, Emma D. & Austen, Melanie C. & Barrett, John & Beaumont, Nicola & Blaber-Wegg, Tina & Brown, Gareth & Carter-Silk, Eleanor & Cazenave, Pierre & Eigenbrod, Fe, 2016. "Bridging the gap between energy and the environment," Energy Policy, Elsevier, vol. 92(C), pages 181-189.
    10. Pattanaik, Bhabani Prasanna & Misra, Rahul Dev, 2017. "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 545-557.
    11. Tomasz Bochenski & Tanmay Chaturvedi & Mette Hedegaard Thomsen & Jens Ejbye Schmidt, 2019. "Evaluation of Marine Synechococcus for an Algal Biorefinery in Arid Regions," Energies, MDPI, vol. 12(12), pages 1-13, June.
    12. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    13. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    14. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    15. Holland, R.A. & Eigenbrod, F. & Muggeridge, A. & Brown, G. & Clarke, D. & Taylor, G., 2015. "A synthesis of the ecosystem services impact of second generation bioenergy crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 30-40.
    16. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    17. Kwon, Heeyeul & Kim, Jieun & Park, Yongtae, 2017. "Applying LSA text mining technique in envisioning social impacts of emerging technologies: The case of drone technology," Technovation, Elsevier, vol. 60, pages 15-28.
    18. Reed, James & Ickowitz, Amy & Chervier, Colas & Djoudi, Houria & Moombe, Kaala & Ros-Tonen, Mirjam & Yanou, Malaika & Yuliani, Linda & Sunderland, Terry, 2020. "Integrated landscape approaches in the tropics: A brief stock-take," Land Use Policy, Elsevier, vol. 99(C).
    19. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    20. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4016-:d:180073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.