IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp486-498.html
   My bibliography  Save this article

A novel 3D simulation model for investigating liquid desiccant dehumidification performance based on CFD technology

Author

Listed:
  • Tao, Wen
  • Yimo, Luo
  • Lin, Lu

Abstract

Previous 2D CFD simulation models fail to elaborate the actual simultaneous flow and dehumidification process in liquid desiccant cooling system. Accordingly, the present study successfully developed a novel 3D simulation model for investigating the liquid desiccant dehumidification performance of a falling film dehumidifier. The penetration mass transfer model was implemented in the simulation to account for the interfacial dehumidification process. Experimental system was built for the model validation and the results indicated that the newly developed 3D CFD model could predict the absolute moisture removal accurately with an average deviation of 7%. Parametric study revealed that the dehumidification performance was closely related with air humidity, velocity, solution temperature, centration, temperature and contact angle but seldom affected by air temperature. The simulation results also indicated that falling film of liquid desiccant shrank gradually along the flow direction, leading to an inhomogeneous water vapor absorption process in the dehumidifier. Intense water vapor absorption occurred at the phase interface, resulting in large solution concentration gradient and humidity content in the zone near the air/liquid contact interface. However, minor mass transfer occurred in other zones mainly in the form of diffusion. Accordingly, several heat/mass transfer enhancement approaches, i.e. structural modifications and surface modification, were proposed to improve the flow turbulence and to enlarge the falling film wettability. The newly proposed 3D simulation model and dehumidification enhancement approaches are meaningful for the design and operation of liquid desiccant cooling system.

Suggested Citation

  • Tao, Wen & Yimo, Luo & Lin, Lu, 2019. "A novel 3D simulation model for investigating liquid desiccant dehumidification performance based on CFD technology," Applied Energy, Elsevier, vol. 240(C), pages 486-498.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:486-498
    DOI: 10.1016/j.apenergy.2019.02.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao Wen & Lin Lu & Hongxing Yang & Yimo Luo, 2018. "Investigation on the Regeneration and Corrosion Characteristics of an Anodized Aluminum Plate Regenerator," Energies, MDPI, vol. 11(5), pages 1-15, May.
    2. Luo, Yimo & Chen, Yi & Yang, Hongxing & Wang, Yuanhao, 2017. "Study on an internally-cooled liquid desiccant dehumidifier with CFD model," Applied Energy, Elsevier, vol. 194(C), pages 399-409.
    3. Wen, Tao & Lu, Lin & Dong, Chuanshuai & Luo, Yimo, 2018. "Development and experimental study of a novel plate dehumidifier made of anodized aluminum," Energy, Elsevier, vol. 144(C), pages 169-177.
    4. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    5. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    6. Luo, Yimo & Yang, Hongxing & Lu, Lin, 2014. "Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 136(C), pages 1018-1025.
    7. Luo, Yimo & Yang, Hongxing & Lu, Lin & Qi, Ronghui, 2014. "A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 587-599.
    8. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    9. Luo, Yimo & Shao, Shuangquan & Xu, Hongbo & Tian, Changqing & Yang, Hongxing, 2014. "Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 133(C), pages 127-134.
    10. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    2. Yuquan Zhang & Yanhe Xu & Yuan Zheng & E. Fernandez-Rodriguez & Aoran Sun & Chunxia Yang & Jue Wang, 2019. "Multiobjective Optimization Design and Experimental Investigation on the Axial Flow Pump with Orthogonal Test Approach," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    3. Md Nafiul Islam & Md Zafar Iqbal & Mohammod Ali & Md Ashrafuzzaman Gulandaz & Md Shaha Nur Kabir & Seung-Ho Jang & Sun-Ok Chung, 2023. "Evaluation of a 0.7 kW Suspension-Type Dehumidifier Module in a Closed Chamber and in a Small Greenhouse," Sustainability, MDPI, vol. 15(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    2. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    3. Wen, Tao & Lu, Lin & Li, Mai & Zhong, Hong, 2018. "Comparative study of the regeneration characteristics of LiCl and a new mixed liquid desiccant solution," Energy, Elsevier, vol. 163(C), pages 992-1005.
    4. Luo, Yimo & Chen, Yi & Yang, Hongxing & Wang, Yuanhao, 2017. "Study on an internally-cooled liquid desiccant dehumidifier with CFD model," Applied Energy, Elsevier, vol. 194(C), pages 399-409.
    5. Luo, Yimo & Wang, Meng & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Experimental study of the film thickness in the dehumidifier of a liquid desiccant air conditioning system," Energy, Elsevier, vol. 84(C), pages 239-246.
    6. Lu, Hao & Lu, Lin & Luo, Yimo & Qi, Ronghui, 2016. "Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification," Energy, Elsevier, vol. 101(C), pages 229-238.
    7. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    8. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    9. Guan, Bowen & Zhang, Tao & Jun, Liu & Liu, Xiaohua, 2020. "Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study," Energy, Elsevier, vol. 196(C).
    10. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    11. Kumar, Ritunesh & Khan, Rehan & Ma, Zhenjun, 2021. "Suitability of plate versus cylinder surface for the development of low flow falling film liquid desiccant dehumidifiers," Renewable Energy, Elsevier, vol. 179(C), pages 723-736.
    12. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    13. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    14. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    15. Wen, Tao & Lu, Lin & Dong, Chuanshuai & Luo, Yimo, 2018. "Development and experimental study of a novel plate dehumidifier made of anodized aluminum," Energy, Elsevier, vol. 144(C), pages 169-177.
    16. Liang, Cai-Hang & Li, Nan-Feng & Huang, Si-Min, 2020. "Entropy and exergy analysis of an internally-cooled membrane liquid desiccant dehumidifier," Energy, Elsevier, vol. 192(C).
    17. Tao Wen & Lin Lu & Hongxing Yang & Yimo Luo, 2018. "Investigation on the Regeneration and Corrosion Characteristics of an Anodized Aluminum Plate Regenerator," Energies, MDPI, vol. 11(5), pages 1-15, May.
    18. Qu, Ke & Barreto, Germilly & Iten, Muriel & Wang, Yuhao & Riffat, Saffa, 2023. "Energy and thermal performance of optimised hollow fibre liquid desiccant cooling and dehumidification systems in mediterranean regions: Modelling, validation and case study," Energy, Elsevier, vol. 263(PC).
    19. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    20. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:486-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.