IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics096014812400212x.html
   My bibliography  Save this article

Experimental and numerical study on the offshore adaptability of new FLH2 floating hydrogen liquefaction production storage and offloading unit

Author

Listed:
  • Sun, Chongzheng
  • Liu, Yuxiang
  • Yang, Xin
  • Li, Yuxing
  • Geng, Xiaoyi
  • Han, Hui
  • Lu, Xiao

Abstract

With the development of hydrogen production technology from offshore wind power and natural gas, the deep-sea energy interconnection system using hydrogen energy as the medium is constantly improving. The floating hydrogen liquefaction production storage and offloading unit (LH2-FPSO, FLH2) is an effective method for large-scale utilization of offshore hydrogen energy. By filling the heat exchanger with ortho-parahydrogen conversion catalyst, a new porous medium heat exchange channel is formed. Integrating the spiral wound heat exchanger with the ortho-parahydrogen catalytic conversion reactor can reduce the deck area of FLH2 process system and lower the investment cost of floating hydrogen liquefaction device. The performance of FLH2 can be influenced by the offshore wave and typhoon. In this paper, the methods of floating cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the coupled flow and heat transfer mechanism of working fluid applied in FLH2 under offshore conditions. The results show that the sea state has little influence on the ortho-parahydrogen conversion and cooling process of hydrogen in the porous heat exchange tube. The complex flow and heat transfer challenges brought by the integrated process of new floating hydrogen liquefaction and ortho-parahydrogen conversion have been overcome. With the effect of co-current shear of gas-phase mixed refrigerant, a large dry area will not appear on the outer wall surface of porous tube under offshore conditions. The FLH2 process system shows good adaptability at sea.

Suggested Citation

  • Sun, Chongzheng & Liu, Yuxiang & Yang, Xin & Li, Yuxing & Geng, Xiaoyi & Han, Hui & Lu, Xiao, 2024. "Experimental and numerical study on the offshore adaptability of new FLH2 floating hydrogen liquefaction production storage and offloading unit," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s096014812400212x
    DOI: 10.1016/j.renene.2024.120147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400212X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Webb, Jeremy & Longden, Thomas & Boulaire, Fanny & Gono, Marcel & Wilson, Clevo, 2023. "The application of green finance to the production of blue and green hydrogen: A comparative study," Renewable Energy, Elsevier, vol. 219(P1).
    2. Sun, Chongzheng & Fan, Xin & Li, Yuxing & Han, Hui & Zhu, Jianlu & Liu, Liang & Geng, Xiaoyi, 2022. "Research on the offshore adaptability of new offshore ammonia-hydrogen coupling storage and transportation technology," Renewable Energy, Elsevier, vol. 201(P1), pages 700-711.
    3. Daguenet-Frick, Xavier & Gantenbein, Paul & Müller, Jonas & Fumey, Benjamin & Weber, Robert, 2017. "Seasonal thermochemical energy storage: Comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit," Renewable Energy, Elsevier, vol. 110(C), pages 162-173.
    4. Yilmaz, Ceyhun, 2018. "A case study: Exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle," Renewable Energy, Elsevier, vol. 128(PA), pages 68-80.
    5. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    6. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
    7. Kumar, Ritunesh & Khan, Rehan & Ma, Zhenjun, 2021. "Suitability of plate versus cylinder surface for the development of low flow falling film liquid desiccant dehumidifiers," Renewable Energy, Elsevier, vol. 179(C), pages 723-736.
    8. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Wen, John Z., 2022. "Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems," Renewable Energy, Elsevier, vol. 200(C), pages 360-378.
    9. Carlson, Ewa Lazarczyk & Pickford, Kit & Nyga-Łukaszewska, Honorata, 2023. "Green hydrogen and an evolving concept of energy security: Challenges and comparisons," Renewable Energy, Elsevier, vol. 219(P1).
    10. Chen, Jingdong & Zhang, Ruihang & Niu, Runping, 2015. "Numerical simulation of horizontal tube bundle falling film flow pattern transformation," Renewable Energy, Elsevier, vol. 73(C), pages 62-68.
    11. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    12. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.
    2. Eugeniusz Mokrzycki & Lidia Gawlik, 2024. "The Development of a Green Hydrogen Economy: Review," Energies, MDPI, vol. 17(13), pages 1-29, June.
    3. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    4. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    5. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    6. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    7. Katharina Löhr & Custódio Efraim Matavel & Sophia Tadesse & Masoud Yazdanpanah & Stefan Sieber & Nadejda Komendantova, 2022. "Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa," Land, MDPI, vol. 11(12), pages 1-23, December.
    8. Qi, Yunying & Xu, Xiao & Liu, Youbo & Pan, Li & Liu, Junyong & Hu, Weihao, 2024. "Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet," Renewable Energy, Elsevier, vol. 222(C).
    9. Sun, Chongzheng & Li, Yuxing & Han, Hui & Zhu, Jianlu & Wang, Shaowei & Liu, Liang, 2019. "Experimental and numerical simulation study on the offshore adaptability of spiral wound heat exchanger in LNG-FPSO DMR natural gas liquefaction process," Energy, Elsevier, vol. 189(C).
    10. Müller, Leander A. & Leonard, Alycia & Trotter, Philipp A. & Hirmer, Stephanie, 2023. "Green hydrogen production and use in low- and middle-income countries: A least-cost geospatial modelling approach applied to Kenya," Applied Energy, Elsevier, vol. 343(C).
    11. Andrew J. Curtis & Benjamin C. McLellan, 2023. "Potential Domestic Energy System Vulnerabilities from Major Exports of Green Hydrogen: A Case Study of Australia," Energies, MDPI, vol. 16(16), pages 1-34, August.
    12. Abid, Md. Shadman & Ahshan, Razzaqul & Al Abri, Rashid & Al-Badi, Abdullah & Albadi, Mohammed, 2024. "Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids," Applied Energy, Elsevier, vol. 353(PA).
    13. Fengyuan Yan & Jinliang Geng & Guangxin Rong & Heng Sun & Lei Zhang & Jinxu Li, 2023. "Optimization and Analysis of an Integrated Liquefaction Process for Hydrogen and Natural Gas Utilizing Mixed Refrigerant Pre-Cooling," Energies, MDPI, vol. 16(10), pages 1-18, May.
    14. Tareq Salameh & Abdul Ghani Olabi & Mohammad Ali Abdelkareem & Mohd Shahbudin Masdar & Siti Kartom Kamarudin & Enas Taha Sayed, 2023. "Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates," Energies, MDPI, vol. 16(2), pages 1-20, January.
    15. Zhang, Tao & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao, 2024. "Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50Nm3 H2/h," Applied Energy, Elsevier, vol. 360(C).
    16. Kotowicz, Janusz & Uchman, Wojciech & Jurczyk, Michał & Sekret, Robert, 2023. "Evaluation of the potential for distributed generation of green hydrogen using metal-hydride storage methods," Applied Energy, Elsevier, vol. 344(C).
    17. José Carlos Curvelo Santana & Pedro Gerber Machado & Cláudio Augusto Oller do Nascimento & Celma de Oliveira Ribeiro, 2023. "Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid," Energies, MDPI, vol. 16(9), pages 1-21, April.
    18. Sadiq, Muhammad & Alshehhi, Reem J. & Urs, Rahul Rajeevkumar & Mayyas, Ahmad T., 2023. "Techno-economic analysis of Green-H2@Scale production," Renewable Energy, Elsevier, vol. 219(P1).
    19. Pierre-Antoine Muselli & Jean-Nicolas Antoniotti & Marc Muselli, 2022. "Climate Change Impacts on Gaseous Hydrogen (H 2 ) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe," Energies, MDPI, vol. 16(1), pages 1-21, December.
    20. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun & Wang, Tianwei, 2024. "Comparison of different hydrogen-ammonia energy conversion pathways for renewable energy supply," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s096014812400212x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.