IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v175y2023ics1364032123000199.html
   My bibliography  Save this article

Volatile fatty acids production from municipal waste streams and use as a carbon source for denitrification: The journey towards full-scale application and revealing key microbial players

Author

Listed:
  • Owusu-Agyeman, I.
  • Bedaso, B.
  • Laumeyer, C.
  • Pan, C.
  • Malovanyy, A.
  • Baresel, C.
  • Plaza, E.
  • Cetecioglu, Z.

Abstract

Volatile fatty acids (VFAs) production is attracting interest as a sustainable approach to maximize resource recovery from organic wastes. This study explored the interlink between long-term system resilience of VFA production from primary sludge (PS) and external organic waste (OW) without pH control and the microbial community dynamics as well as the effect of substrate variability. The study elucidated the practicality of using VFA-rich effluent as a carbon source for wastewater denitrification. A 15 L bench-scale semi-continuous reactor was operated for 315 days with a feed of 70% v/v PS and 30% v/v OW and scaled up to a 2 m3 pilot-scale continuous reactor operated for 264 days. In the bench-scale study, the system was resilient with VFA production of up to 24,700 ± 400 mg COD/L and a yield of 506 ± 25 mg COD/g VSfed. The VFA composition was dominated by caproic acid up to 62% w/w. In the pilot-scale reactor, substrate variability influenced VFA production with a concentration of up to 21,500 ± 500 mg COD/L. The system was shown to be economically viable. The microbial community was dominated by Lachnospiraceae, Streptococcaceae and Comamonadaceae. The relative abundance of Lachnospiraceae gave a strong positive statistical correlation with caproic acid concentrations. The VFA-rich effluent exhibited a higher specific denitrification rate than methanol and acetate. Moreover, a continuous denitrification experiment with real nitrified wastewater resulted in a high nitrate removal efficiency with a maximum of 98%. The study demonstrates the production of bio-based products from organic wastes as alternatives to fossil-based products.

Suggested Citation

  • Owusu-Agyeman, I. & Bedaso, B. & Laumeyer, C. & Pan, C. & Malovanyy, A. & Baresel, C. & Plaza, E. & Cetecioglu, Z., 2023. "Volatile fatty acids production from municipal waste streams and use as a carbon source for denitrification: The journey towards full-scale application and revealing key microbial players," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032123000199
    DOI: 10.1016/j.rser.2023.113163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    2. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    4. James Darmey & Julius Cudjoe Ahiekpor & Satyanarayana Narra & Osei-Wusu Achaw & Herbert Fiifi Ansah, 2023. "Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review," Energies, MDPI, vol. 16(23), pages 1-21, November.
    5. Prajapati, Kishan Kumar & Yadav, Monika & Singh, Rao Martand & Parikh, Priti & Pareek, Nidhi & Vivekanand, Vivekanand, 2021. "An overview of municipal solid waste management in Jaipur city, India - Current status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Zainal, Bidattul Syirat & Ker, Pin Jern & Mohamed, Hassan & Ong, Hwai Chyuan & Fattah, I.M.R. & Rahman, S.M. Ashrafur & Nghiem, Long D. & Mahlia, T M Indra, 2024. "Recent advancement and assessment of green hydrogen production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Dong, Wenjian & Yang, Youli & Liu, Chao & Zhang, Jiachao & Pan, Junting & Luo, Lin & Wu, Genyi & Awasthi, Mukesh Kumar & Yan, Binghua, 2023. "Caproic acid production from anaerobic fermentation of organic waste - Pathways and microbial perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Liu, Hongbo & Wang, Xingkang & Fang, Yueying & Lai, Wenjia & Xu, Suyun & Lichtfouse, Eric, 2022. "Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar," Renewable Energy, Elsevier, vol. 188(C), pages 465-475.
    9. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    10. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Kim, Seunghwan & Lee, Changmin & Young Kim, Jae, 2023. "Effects of alkaline thermal hydrolysis on the formation of refractory compounds and energy balance of anaerobic digestion of cattle manure," Applied Energy, Elsevier, vol. 342(C).
    12. Mancini, G. & Lombardi, L. & Luciano, A. & Bolzonella, D. & Viotti, P. & Fino, D., 2024. "A reduction in global impacts through a waste-wastewater-energy nexus: A life cycle assessment," Energy, Elsevier, vol. 289(C).
    13. Santo Fabio Corsino & Michele Torregrossa & Gaspare Viviani, 2021. "Biomethane Production from Anaerobic Co-Digestion of Selected Organic Fraction of Municipal Solid Waste (OFMSW) with Sewage Sludge: Effect of the Inoculum to Substrate Ratio (ISR) and Mixture Composit," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    14. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    15. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    16. Peng, Wei & Beggio, Giovanni & Pivato, Alberto & Zhang, Hua & Lü, Fan & He, Pinjing, 2022. "Applications of near infrared spectroscopy and hyperspectral imaging techniques in anaerobic digestion of bio-wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    19. Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2022. "Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032123000199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.