IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v175y2023ics1364032123000199.html
   My bibliography  Save this article

Volatile fatty acids production from municipal waste streams and use as a carbon source for denitrification: The journey towards full-scale application and revealing key microbial players

Author

Listed:
  • Owusu-Agyeman, I.
  • Bedaso, B.
  • Laumeyer, C.
  • Pan, C.
  • Malovanyy, A.
  • Baresel, C.
  • Plaza, E.
  • Cetecioglu, Z.

Abstract

Volatile fatty acids (VFAs) production is attracting interest as a sustainable approach to maximize resource recovery from organic wastes. This study explored the interlink between long-term system resilience of VFA production from primary sludge (PS) and external organic waste (OW) without pH control and the microbial community dynamics as well as the effect of substrate variability. The study elucidated the practicality of using VFA-rich effluent as a carbon source for wastewater denitrification. A 15 L bench-scale semi-continuous reactor was operated for 315 days with a feed of 70% v/v PS and 30% v/v OW and scaled up to a 2 m3 pilot-scale continuous reactor operated for 264 days. In the bench-scale study, the system was resilient with VFA production of up to 24,700 ± 400 mg COD/L and a yield of 506 ± 25 mg COD/g VSfed. The VFA composition was dominated by caproic acid up to 62% w/w. In the pilot-scale reactor, substrate variability influenced VFA production with a concentration of up to 21,500 ± 500 mg COD/L. The system was shown to be economically viable. The microbial community was dominated by Lachnospiraceae, Streptococcaceae and Comamonadaceae. The relative abundance of Lachnospiraceae gave a strong positive statistical correlation with caproic acid concentrations. The VFA-rich effluent exhibited a higher specific denitrification rate than methanol and acetate. Moreover, a continuous denitrification experiment with real nitrified wastewater resulted in a high nitrate removal efficiency with a maximum of 98%. The study demonstrates the production of bio-based products from organic wastes as alternatives to fossil-based products.

Suggested Citation

  • Owusu-Agyeman, I. & Bedaso, B. & Laumeyer, C. & Pan, C. & Malovanyy, A. & Baresel, C. & Plaza, E. & Cetecioglu, Z., 2023. "Volatile fatty acids production from municipal waste streams and use as a carbon source for denitrification: The journey towards full-scale application and revealing key microbial players," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032123000199
    DOI: 10.1016/j.rser.2023.113163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    2. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    4. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    5. James Darmey & Julius Cudjoe Ahiekpor & Satyanarayana Narra & Osei-Wusu Achaw & Herbert Fiifi Ansah, 2023. "Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review," Energies, MDPI, vol. 16(23), pages 1-21, November.
    6. Peng, Wei & Beggio, Giovanni & Pivato, Alberto & Zhang, Hua & Lü, Fan & He, Pinjing, 2022. "Applications of near infrared spectroscopy and hyperspectral imaging techniques in anaerobic digestion of bio-wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    9. Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2022. "Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    12. Prajapati, Kishan Kumar & Yadav, Monika & Singh, Rao Martand & Parikh, Priti & Pareek, Nidhi & Vivekanand, Vivekanand, 2021. "An overview of municipal solid waste management in Jaipur city, India - Current status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    14. Zainal, Bidattul Syirat & Ker, Pin Jern & Mohamed, Hassan & Ong, Hwai Chyuan & Fattah, I.M.R. & Rahman, S.M. Ashrafur & Nghiem, Long D. & Mahlia, T M Indra, 2024. "Recent advancement and assessment of green hydrogen production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Dong, Wenjian & Yang, Youli & Liu, Chao & Zhang, Jiachao & Pan, Junting & Luo, Lin & Wu, Genyi & Awasthi, Mukesh Kumar & Yan, Binghua, 2023. "Caproic acid production from anaerobic fermentation of organic waste - Pathways and microbial perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Kegl, Tina, 2024. "Anaerobic digestion BioModel upgraded by various inhibition types," Renewable Energy, Elsevier, vol. 226(C).
    17. Liu, Hongbo & Wang, Xingkang & Fang, Yueying & Lai, Wenjia & Xu, Suyun & Lichtfouse, Eric, 2022. "Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar," Renewable Energy, Elsevier, vol. 188(C), pages 465-475.
    18. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    19. Shweta Mitra & Prasad Kaparaju, 2024. "Feasibility of Food Organics and Garden Organics as a Promising Source of Biomethane: A Review on Process Optimisation and Impact of Nanomaterials," Energies, MDPI, vol. 17(16), pages 1-39, August.
    20. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032123000199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.