IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp972-980.html
   My bibliography  Save this article

A novel wind turbine health condition monitoring method based on composite variational mode entropy and weighted distribution adaptation

Author

Listed:
  • Ren, He
  • Liu, Wenyi
  • Shan, Mengchen
  • Wang, Xin
  • Wang, Zhengfeng

Abstract

Aimed at the problem that the complicated working condition of wind turbine and the lack of sufficient target samples, which makes it difficult to conduct effective health condition monitoring (HCM), a novel method based on composite variational mode entropy (CVME) and weighted distribution adaptation (WDA) is proposed in this paper. A series of mode components are first obtained by performing variational mode decomposition (VMD) on the signals under various working conditions. The mode components are analyzed on multi-scale, and then the fuzzy entropy is extracted at different scales. The extracted CVME is input as a feature vector into WDA. The WDA method can effectively reduce the discrepancy of data distribution between the source and target domains by adjusting the weight of the marginal distribution and the conditional distribution, and solve the problem of class imbalance in domains by a weight matrix. The transferability evaluation is used to select the feature sets under auxiliary working conditions with high similarity to the target feature set as the source samples. Finally, the source and target samples are input into the classifier for training and testing. Compared with traditional fault diagnosis methods, experiment shows that the proposed method has higher accuracy in wind turbine fault diagnosis under variable working conditions.

Suggested Citation

  • Ren, He & Liu, Wenyi & Shan, Mengchen & Wang, Xin & Wang, Zhengfeng, 2021. "A novel wind turbine health condition monitoring method based on composite variational mode entropy and weighted distribution adaptation," Renewable Energy, Elsevier, vol. 168(C), pages 972-980.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:972-980
    DOI: 10.1016/j.renene.2020.12.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120320516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naik, Jyotirmayee & Dash, Pradipta Kishore & Dhar, Snehamoy, 2019. "A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression," Renewable Energy, Elsevier, vol. 136(C), pages 701-731.
    2. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    3. Yang, Wenguang & Liu, Chao & Jiang, Dongxiang, 2018. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 127(C), pages 230-241.
    4. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
    5. Hu, Yaogang & Li, Hui & Shi, Pingping & Chai, Zhaosen & Wang, Kun & Xie, Xiangjie & Chen, Zhe, 2018. "A prediction method for the real-time remaining useful life of wind turbine bearings based on the Wiener process," Renewable Energy, Elsevier, vol. 127(C), pages 452-460.
    6. Hao Duan & Ming Lu & Yongteng Sun & Jinyu Wang & Cheng Wang & Zuguo Chen, 2020. "Fault Diagnosis of PMSG Wind Power Generation System Based on LMD and MSE," Complexity, Hindawi, vol. 2020, pages 1-11, July.
    7. Song, Zhe & Zhang, Zijun & Jiang, Yu & Zhu, Jin, 2018. "Wind turbine health state monitoring based on a Bayesian data-driven approach," Renewable Energy, Elsevier, vol. 125(C), pages 172-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Doğan, Buhari & Ghosh, Sudeshna, 2023. "Sustainable debt and gas markets: A new look using the time-varying wavelet-windowed cross-correlation approach," Energy Economics, Elsevier, vol. 120(C).
    2. Jastrzebska, Agnieszka & Morales Hernández, Alejandro & Nápoles, Gonzalo & Salgueiro, Yamisleydi & Vanhoof, Koen, 2022. "Measuring wind turbine health using fuzzy-concept-based drifting models," Renewable Energy, Elsevier, vol. 190(C), pages 730-740.
    3. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    4. Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
    5. Zhao, Zhigao & Chen, Fei & Gui, Zhonghua & Liu, Dong & Yang, Jiandong, 2023. "Refined composite hierarchical multiscale Lempel-Ziv complexity: A quantitative diagnostic method of multi-feature fusion for rotating energy devices," Renewable Energy, Elsevier, vol. 218(C).
    6. Wang, Jun & Ren, He & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2024. "Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jastrzebska, Agnieszka & Morales Hernández, Alejandro & Nápoles, Gonzalo & Salgueiro, Yamisleydi & Vanhoof, Koen, 2022. "Measuring wind turbine health using fuzzy-concept-based drifting models," Renewable Energy, Elsevier, vol. 190(C), pages 730-740.
    2. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    3. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
    5. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    6. Jin Cui & Licai Cao & Tianxiao Zhang, 2024. "A two-stage Gaussian process regression model for remaining useful prediction of bearings," Journal of Risk and Reliability, , vol. 238(2), pages 333-348, April.
    7. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    8. Xinkai Li & Ke Yang & Hao Hu & Xiaodong Wang & Shun Kang, 2019. "Effect of Tailing-Edge Thickness on Aerodynamic Noise for Wind Turbine Airfoil," Energies, MDPI, vol. 12(2), pages 1-25, January.
    9. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    10. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    11. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    12. Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
    13. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    14. Jesús Enrique Sierra-García & Matilde Santos, 2021. "Lookup Table and Neural Network Hybrid Strategy for Wind Turbine Pitch Control," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    15. Katarzyna Wolniewicz & Adam Zagubień & Mirosław Wesołowski, 2021. "Energy and Acoustic Environmental Effective Approach for a Wind Farm Location," Energies, MDPI, vol. 14(21), pages 1-17, November.
    16. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    17. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    18. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    19. Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
    20. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:972-980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.