IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3235-d517481.html
   My bibliography  Save this article

Lookup Table and Neural Network Hybrid Strategy for Wind Turbine Pitch Control

Author

Listed:
  • Jesús Enrique Sierra-García

    (Electromechanical Engineering Department, University of Burgos, 09006 Burgos, Spain)

  • Matilde Santos

    (Institute of Knowledge Technology, Complutense University of Madrid, 28040 Madrid, Spain)

Abstract

Wind energy plays a key role in the sustainability of the worldwide energy system. It is forecasted to be the main source of energy supply by 2050. However, for this prediction to become reality, there are still technological challenges to be addressed. One of them is the control of the wind turbine in order to improve its energy efficiency. In this work, a new hybrid pitch-control strategy is proposed that combines a lookup table and a neural network. The table and the RBF neural network complement each other. The neural network learns to compensate for the errors in the mapping function implemented by the lookup table, and in turn, the table facilitates the learning of the neural network. This synergy of techniques provides better results than if the techniques were applied individually. Furthermore, it is shown how the neural network is able to control the pitch even if the lookup table is poorly designed. The operation of the proposed control strategy is compared with the neural control without the table, with a PID regulator, and with the combination of the PID and the lookup table. In all cases, the proposed hybrid control strategy achieves better results in terms of output power error.

Suggested Citation

  • Jesús Enrique Sierra-García & Matilde Santos, 2021. "Lookup Table and Neural Network Hybrid Strategy for Wind Turbine Pitch Control," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3235-:d:517481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tugce Demirdelen & Pırıl Tekin & Inayet Ozge Aksu & Firat Ekinci, 2019. "The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
    2. J. Enrique Sierra-García & Matilde Santos, 2020. "Performance Analysis of a Wind Turbine Pitch Neurocontroller with Unsupervised Learning," Complexity, Hindawi, vol. 2020, pages 1-15, September.
    3. Mansoor Khan & Tianqi Liu & Farhan Ullah, 2019. "A New Hybrid Approach to Forecast Wind Power for Large Scale Wind Turbine Data Using Deep Learning with TensorFlow Framework and Principal Component Analysis," Energies, MDPI, vol. 12(12), pages 1-21, June.
    4. Moodi, Hoda & Bustan, Danyal, 2019. "Wind turbine control using T-S systems with nonlinear consequent parts," Energy, Elsevier, vol. 172(C), pages 922-931.
    5. Mikati, M. & Santos, M. & Armenta, C., 2013. "Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system," Renewable Energy, Elsevier, vol. 57(C), pages 587-593.
    6. Hao Duan & Ming Lu & Yongteng Sun & Jinyu Wang & Cheng Wang & Zuguo Chen, 2020. "Fault Diagnosis of PMSG Wind Power Generation System Based on LMD and MSE," Complexity, Hindawi, vol. 2020, pages 1-11, July.
    7. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    8. Aitor Saenz-Aguirre & Ekaitz Zulueta & Unai Fernandez-Gamiz & Javier Lozano & Jose Manuel Lopez-Guede, 2019. "Artificial Neural Network Based Reinforcement Learning for Wind Turbine Yaw Control," Energies, MDPI, vol. 12(3), pages 1-17, January.
    9. Silvio Simani & Paolo Castaldi, 2020. "Fault Diagnosis Techniques for a Wind Turbine System," Chapters, in: Fausto Pedro Garcia Marquez (ed.), Fault Detection, Diagnosis and Prognosis, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gökalp, E. & Gülpınar, N. & Doan, X.V., 2023. "Dynamic surgery management under uncertainty," European Journal of Operational Research, Elsevier, vol. 309(2), pages 832-844.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Galán-Lavado & Matilde Santos, 2021. "Analysis of the Effects of the Location of Passive Control Devices on the Platform of a Floating Wind Turbine," Energies, MDPI, vol. 14(10), pages 1-19, May.
    2. Chan Roh, 2022. "Deep-Learning-Based Pitch Controller for Floating Offshore Wind Turbine Systems with Compensation for Delay of Hydraulic Actuators," Energies, MDPI, vol. 15(9), pages 1-18, April.
    3. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
    6. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    7. Ren, He & Liu, Wenyi & Shan, Mengchen & Wang, Xin & Wang, Zhengfeng, 2021. "A novel wind turbine health condition monitoring method based on composite variational mode entropy and weighted distribution adaptation," Renewable Energy, Elsevier, vol. 168(C), pages 972-980.
    8. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.
    9. Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
    10. Wang, Yuqi & Du, Qiuwan & Li, Yunzhu & Zhang, Di & Xie, Yonghui, 2022. "Field reconstruction and off-design performance prediction of turbomachinery in energy systems based on deep learning techniques," Energy, Elsevier, vol. 238(PB).
    11. Daeil Lee & Seoryong Koo & Inseok Jang & Jonghyun Kim, 2022. "Comparison of Deep Reinforcement Learning and PID Controllers for Automatic Cold Shutdown Operation," Energies, MDPI, vol. 15(8), pages 1-25, April.
    12. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    13. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
    14. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    15. Pei Zhang & Shugeng Yang & Yan Li & Jiayang Gu & Zhiqiang Hu & Ruoyu Zhang & Yougang Tang, 2020. "Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths," Energies, MDPI, vol. 13(11), pages 1-20, June.
    16. Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    17. Ander Sánchez-Chica & Ekaitz Zulueta & Daniel Teso-Fz-Betoño & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz, 2019. "ANN-Based Stop Criteria for a Genetic Algorithm Applied to Air Impingement Design," Energies, MDPI, vol. 13(1), pages 1-17, December.
    18. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    19. Golnary, Farshad & Moradi, Hamed, 2022. "Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 50-69.
    20. Xiaodong Wang & Zhaoliang Ye & Shun Kang & Hui Hu, 2019. "Investigations on the Unsteady Aerodynamic Characteristics of a Horizontal-Axis Wind Turbine during Dynamic Yaw Processes," Energies, MDPI, vol. 12(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3235-:d:517481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.