IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp740-760.html
   My bibliography  Save this article

Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition

Author

Listed:
  • Li, Wei
  • Ji, Leilei
  • Li, Enda
  • Shi, Weidong
  • Agarwal, Ramesh
  • Zhou, Ling

Abstract

In order to further enrich the theory of rotational stall, this paper explored the mechanism of internal energy loss in the mixed-flow pump under stall condition based on the shear stress transport (SST) k-ω turbulence model, identified the vortices in the impeller by the Q-criterion method, and characterized the turbulence intensity by the turbulent kinetic energy (TKE). The results show that the SST turbulence model can well predict the positive slope characteristics of the energy performance curve of a mixed-flow pump, and there are obvious characteristics of rotating stall in impeller. The numerical results of the energy performance curve and internal flow field are in good agreement with the experimental results. Under stall conditions, there exist swirls and vortices at impeller inlet, which makes the flow inception angle increase by 38°. Meanwhile, the tip leakage flow causes certain energy loss in the rim region, but the high loss area caused by the leakage vortex does not coincide with the core region of the leakage vortex. The interaction between stall vortex and the main flow in the flow passage results in the large-scale blockage area, which is the most fatal effect on the head drop of the mixed-flow pump. The backflow appears on the suction surface of the blade outlet, which has a great impact on the main flow and leads to a large hydraulic loss. The typical characteristics of critical stall and deep stall are found. Under the critical stall condition, part of the leakage flow overflows the leading edge of the lower blade and affects the flow of the next passage. While under deep stall condition, the streamlines of the leading edge of stall vortex reaches the inlet of the next stage blade and overflows, causing a lot of energy loss. And the interference effect between tip leakage flow and stall vortex is strengthened. In general, under the deep stall condition, the average turbulent kinetic energy value in the passages is the highest, and the uniformity of flow rate distribution in the four passages is the worst, resulting in the largest energy loss, which is at the lowest head in the saddle area.

Suggested Citation

  • Li, Wei & Ji, Leilei & Li, Enda & Shi, Weidong & Agarwal, Ramesh & Zhou, Ling, 2021. "Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition," Renewable Energy, Elsevier, vol. 167(C), pages 740-760.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:740-760
    DOI: 10.1016/j.renene.2020.11.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031898X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    2. Han, Yadong & Tan, Lei, 2020. "Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 162(C), pages 144-150.
    3. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    4. Xiaojun Li & Shouqi Yuan & Zhongyong Pan & Yi Li & Wei Liu, 2013. "Dynamic Characteristics of Rotating Stall in Mixed Flow Pump," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-12, October.
    5. Wei Li & Leilei Ji & Weidong Shi & Ling Zhou & Hao Chang & Ramesh K. Agarwal, 2020. "Expansion of High Efficiency Region of Wind Energy Centrifugal Pump Based on Factorial Experiment Design and Computational Fluid Dynamics," Energies, MDPI, vol. 13(2), pages 1-24, January.
    6. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    7. Zhou, Ling & Deshpande, Kartik & Zhang, Xiao & Agarwal, Ramesh K., 2020. "Process simulation of Chemical Looping Combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers," Energy, Elsevier, vol. 195(C).
    8. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    9. Tang, Pan & Li, Hong & Issaka, Zakaria & Chen, Chao, 2018. "Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems," Agricultural Water Management, Elsevier, vol. 200(C), pages 71-79.
    10. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    11. Li, Wei & Li, Enda & Ji, Leilei & Zhou, Ling & Shi, Weidong & Zhu, Yong, 2020. "Mechanism and propagation characteristics of rotating stall in a mixed-flow pump," Renewable Energy, Elsevier, vol. 153(C), pages 74-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    2. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    3. Kan Kan & Qingying Zhang & Yuan Zheng & Hui Xu & Zhe Xu & Jianwei Zhai & Alexis Muhirwa, 2022. "Investigation into Influence of Wall Roughness on the Hydraulic Characteristics of an Axial Flow Pump as Turbine," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    4. Wu, Chengshuo & Pu, Kexin & Li, Changqin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2022. "Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump," Energy, Elsevier, vol. 246(C).
    5. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    6. Xinfeng Ge & Jing Zhang & Jian Zhang & Demin Liu & Yuan Zheng & Huixiang Chen, 2022. "Review of Research on the Three-Dimensional Transition Process of Large-Scale Low-Lift Pump," Energies, MDPI, vol. 15(22), pages 1-34, November.
    7. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    8. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    2. Xi, Shen & Desheng, Zhang & Bin, Xu & Weidong, Shi & (Bart) van Esch, B.P.M., 2021. "Experimental and numerical investigation on the effect of tip leakage vortex induced cavitating flow on pressure fluctuation in an axial flow pump," Renewable Energy, Elsevier, vol. 163(C), pages 1195-1209.
    3. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    4. Yücenur, G. Nilay & Ipekçi, Ahmet, 2021. "SWARA/WASPAS methods for a marine current energy plant location selection problem," Renewable Energy, Elsevier, vol. 163(C), pages 1287-1298.
    5. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    6. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    7. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    8. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    9. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    10. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    11. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
    12. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    13. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    14. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    16. Han, Yadong & Liu, Yabin & Tan, Lei, 2022. "Method of variable-depth groove on vortex and cavitation suppression for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 199(C), pages 546-559.
    17. Honggang Fan & Jinsong Zhang & Wei Zhang & Bing Liu, 2020. "Multiparameter and Multiobjective Optimization Design Based on Orthogonal Method for Mixed Flow Fan," Energies, MDPI, vol. 13(11), pages 1-15, June.
    18. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    19. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    20. Zhang, Jingjing & Li, Huanhuan & Chen, Diyi & Xu, Beibei & Mahmud, Md Apel, 2021. "Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power," Renewable Energy, Elsevier, vol. 171(C), pages 1313-1326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:740-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.