IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics0360544220305545.html
   My bibliography  Save this article

Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis

Author

Listed:
  • Ji, Leilei
  • Li, Wei
  • Shi, Weidong
  • Chang, Hao
  • Yang, Zhenyu

Abstract

In order to investigate the effect of impeller tip clearance on the internal flow fields and the hydraulic losses in mixed-flow pump, the entropy production method with computational fluid dynamics (CFD) is employed to analyze the energy losses in a low specified number mixed-flow pump with guide vane. The results show that the size of tip clearance is closely related to the external characteristic performance of mixed-flow pump, and the effect of tip clearance on the flow fields of mixed-flow pump is obvious at design flow rate condition. When the tip clearance raises from 0.2 mm to 1.1 mm, the head drop loss coefficient increases 1.62 times in the impeller. As the tip clearance augments from 0.2 mm to the 1.1 mm, the total entropy production in impeller increases by 142%. Whereas, the total entropy production in guide vane descends by 21.8% slightly. It indicates that the increase of tip leakage flow (TLF) may increase the energy losses in impeller but the hydraulic losses in guide vane is suppressed to some extent as a result of an existence of TLF. Therefore, for the sake of improving the energy performance of mixed-flow pump, it is necessary to take the scale of blade tip clearance into account and consider optimizing the hydraulic design structure of guide vanes comprehensively to match the tip clearance.

Suggested Citation

  • Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305545
    DOI: 10.1016/j.energy.2020.117447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yabin Liu & Lei Tan & Yue Hao & Yun Xu, 2017. "Energy Performance and Flow Patterns of a Mixed-Flow Pump with Different Tip Clearance Sizes," Energies, MDPI, vol. 10(2), pages 1-15, February.
    2. Wei Li & Leilei Ji & Weidong Shi & Ling Zhou & Hao Chang & Ramesh K. Agarwal, 2020. "Expansion of High Efficiency Region of Wind Energy Centrifugal Pump Based on Factorial Experiment Design and Computational Fluid Dynamics," Energies, MDPI, vol. 13(2), pages 1-24, January.
    3. Yue Hao & Lei Tan & Yabin Liu & Yun Xu & Jinsong Zhang & Baoshan Zhu, 2017. "Energy Performance and Radial Force of a Mixed-Flow Pump with Symmetrical and Unsymmetrical Tip Clearances," Energies, MDPI, vol. 10(1), pages 1-13, January.
    4. Zhou, Ling & Deshpande, Kartik & Zhang, Xiao & Agarwal, Ramesh K., 2020. "Process simulation of Chemical Looping Combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers," Energy, Elsevier, vol. 195(C).
    5. Li, Wei & Li, Enda & Ji, Leilei & Zhou, Ling & Shi, Weidong & Zhu, Yong, 2020. "Mechanism and propagation characteristics of rotating stall in a mixed-flow pump," Renewable Energy, Elsevier, vol. 153(C), pages 74-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Ji, Leilei & Li, Enda & Shi, Weidong & Agarwal, Ramesh & Zhou, Ling, 2021. "Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition," Renewable Energy, Elsevier, vol. 167(C), pages 740-760.
    2. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    3. Yu Song & Honggang Fan & Wei Zhang & Zhifeng Xie, 2019. "Flow Characteristics in Volute of a Double-Suction Centrifugal Pump with Different Impeller Arrangements," Energies, MDPI, vol. 12(4), pages 1-15, February.
    4. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    5. Ming Liu & Lei Tan & Shuliang Cao, 2018. "Design Method of Controllable Blade Angle and Orthogonal Optimization of Pressure Rise for a Multiphase Pump," Energies, MDPI, vol. 11(5), pages 1-20, April.
    6. Kumar, P. Madhan & Seo, Jeonghwa & Seok, Woochan & Rhee, Shin Hyung & Samad, Abdus, 2019. "Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 135(C), pages 277-287.
    7. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    8. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    9. Yabin Liu & Lei Tan & Ming Liu & Yue Hao & Yun Xu, 2017. "Influence of Prewhirl Angle and Axial Distance on Energy Performance and Pressure Fluctuation for a Centrifugal Pump with Inlet Guide Vanes," Energies, MDPI, vol. 10(5), pages 1-14, May.
    10. Jinsong Zhang & Lei Tan, 2018. "Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions," Energies, MDPI, vol. 11(5), pages 1-14, May.
    11. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    12. Yabin Liu & Lei Tan & Binbin Wang, 2018. "A Review of Tip Clearance in Propeller, Pump and Turbine," Energies, MDPI, vol. 11(9), pages 1-30, August.
    13. Liu, Yabin & Tan, Lei, 2018. "Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy," Energy, Elsevier, vol. 155(C), pages 448-461.
    14. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    15. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Yang, Hong & Li, Helin & Liu, Xiaobing, 2020. "Effect of the inlet gas void fraction on the tip leakage vortex in a multiphase pump," Renewable Energy, Elsevier, vol. 150(C), pages 46-57.
    16. Jiyun, Du & Hongxing, Yang & Zhicheng, Shen & Xiaodong, Guo, 2018. "Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes," Renewable Energy, Elsevier, vol. 127(C), pages 386-397.
    17. Han, Yadong & Tan, Lei, 2020. "Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 162(C), pages 144-150.
    18. Zhou, Ling & Han, Chen & Bai, Ling & Li, Wei & El-Emam, Mahmoud Ahmed & Shi, Weidong, 2020. "CFD-DEM bidirectional coupling simulation and experimental investigation of particle ejections and energy conversion in a spouted bed," Energy, Elsevier, vol. 211(C).
    19. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    20. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.