IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/104629.html
   My bibliography  Save this article

Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

Author

Listed:
  • Xiaojun Li
  • Shouqi Yuan
  • Zhongyong Pan
  • Yi Li
  • Wei Liu

Abstract

Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

Suggested Citation

  • Xiaojun Li & Shouqi Yuan & Zhongyong Pan & Yi Li & Wei Liu, 2013. "Dynamic Characteristics of Rotating Stall in Mixed Flow Pump," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-12, October.
  • Handle: RePEc:hin:jnljam:104629
    DOI: 10.1155/2013/104629
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2013/104629.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2013/104629.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/104629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wei & Ji, Leilei & Li, Enda & Shi, Weidong & Agarwal, Ramesh & Zhou, Ling, 2021. "Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition," Renewable Energy, Elsevier, vol. 167(C), pages 740-760.
    2. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    3. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    4. Ning Zhang & Delin Li & Bo Gao & Dan Ni & Zhong Li, 2022. "Unsteady Pressure Pulsations in Pumps—A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:104629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.