IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v165y2021ip1p37-42.html
   My bibliography  Save this article

Acetol as a high-performance molecule for oxidation in alkaline direct liquid fuel cell

Author

Listed:
  • Gentil, Tuani C.
  • Pinheiro, Victor S.
  • Souza, Felipe M.
  • de Araújo, Marcos L.
  • Mandelli, Dalmo
  • Batista, Bruno L.
  • dos Santos, Mauro C.

Abstract

This work describes acetol as fuel for electrochemical oxidation in direct alkaline liquid fuel cells, in addition to electrochemical studies for acetol oxidation reactions (AOR) in alkaline medium, catalyzed by nanostructured palladium electrocatalysts supported on carbon (Pd/C). The AOR’s were evaluated by cyclic voltammetry and chronoamperometry and the results were similar those described in the literature for oxidation of small organic molecules, revealing evident oxidation peaks and chronoamperometric currents. Experiments were performed in an alkaline direct liquid fuel cell (ADLFC), using acetol as fuel and electrocatalysts of the Pd/C type as anode. The results in ADLFC showed high values of open circuit potential (OCP), obtaining 1341.3 mV, considerably higher than the results reported in the literature for ethanol oxidation, in addition to a promising power density, in the maximum result of 31.55 mW cm−2, presenting acetol as a high-performance molecule for oxidation in the ADLFC.

Suggested Citation

  • Gentil, Tuani C. & Pinheiro, Victor S. & Souza, Felipe M. & de Araújo, Marcos L. & Mandelli, Dalmo & Batista, Bruno L. & dos Santos, Mauro C., 2021. "Acetol as a high-performance molecule for oxidation in alkaline direct liquid fuel cell," Renewable Energy, Elsevier, vol. 165(P1), pages 37-42.
  • Handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:37-42
    DOI: 10.1016/j.renene.2020.10.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, L. & Zhao, T.S. & Li, Y.S., 2015. "Carbon-neutral sustainable energy technology: Direct ethanol fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1462-1468.
    2. Pinheiro, Victor S. & Souza, Felipe M. & Gentil, Tuani C. & Nascimento, Aline N. & Böhnstedt, Paula & Parreira, Luanna S. & Paz, Edson C. & Hammer, Peter & Sairre, Mirela I. & Batista, Bruno L. & Sant, 2020. "Sn-containing electrocatalysts with a reduced amount of palladium for alkaline direct ethanol fuel cell applications," Renewable Energy, Elsevier, vol. 158(C), pages 49-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junxing, Liu & Chagshi, Liu, 2023. "Reliable and precise determination of energy conversion in fuel cells using an integrable energy model," Renewable Energy, Elsevier, vol. 219(P2).
    2. Zhang, Xin & Rahman, Ehsanur, 2022. "Thermodynamic analysis and optimization of a hybrid power system using thermoradiative device to efficiently recover waste heat from alkaline fuel cell," Renewable Energy, Elsevier, vol. 200(C), pages 1240-1250.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    2. Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
    3. Michaela Roschger & Sigrid Wolf & Boštjan Genorio & Viktor Hacker, 2022. "Effect of PdNiBi Metal Content: Cost Reduction in Alkaline Direct Ethanol Fuel Cells," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    4. Sánchez-Monreal, Juan & García-Salaberri, Pablo A. & Vera, Marcos, 2019. "A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Yu, Bor-Chern & Wang, Yi-Chun & Lu, Hsin-Chun & Lin, Hsiu-Li & Shih, Chao-Ming & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2017. "Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane," Energy, Elsevier, vol. 134(C), pages 802-812.
    6. Deva Harsha Perugupalli & Tao Xu & Kyu Taek Cho, 2019. "Activation of Carbon Porous Paper for Alkaline Alcoholic Fuel Cells," Energies, MDPI, vol. 12(17), pages 1-12, August.
    7. Radenahmad, Nikdalila & Afif, Ahmed & Petra, Pg Iskandar & Rahman, Seikh M.H. & Eriksson, Sten-G. & Azad, Abul K., 2016. "Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1347-1358.
    8. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Benipal, Neeva & Qi, Ji & Gentile, Jacob C. & Li, Wenzhen, 2017. "Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator," Renewable Energy, Elsevier, vol. 105(C), pages 647-655.
    10. An, L. & Jung, C.Y., 2017. "Transport phenomena in direct borohydride fuel cells," Applied Energy, Elsevier, vol. 205(C), pages 1270-1282.
    11. Wu, Q.X. & Pan, Z.F. & An, L., 2018. "Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 168-183.
    12. Luque-Centeno, J.M. & Martínez-Huerta, M.V. & Sebastián, D. & Lemes, G. & Pastor, E. & Lázaro, M.J., 2018. "Bifunctional N-doped graphene Ti and Co nanocomposites for the oxygen reduction and evolution reactions," Renewable Energy, Elsevier, vol. 125(C), pages 182-192.
    13. Selvaraj Rajesh Kumar & Cheng-Hsin Juan & Guan-Ming Liao & Jia-Shiun Lin & Chun-Chen Yang & Wei-Ting Ma & Jiann-Hua You & Shingjiang Jessie Lue, 2015. "Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol) Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells," Energies, MDPI, vol. 9(1), pages 1-19, December.
    14. Osmieri, Luigi & Escudero-Cid, Ricardo & Monteverde Videla, Alessandro H.A. & Ocón, Pilar & Specchia, Stefania, 2018. "Application of a non-noble Fe-N-C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell," Renewable Energy, Elsevier, vol. 115(C), pages 226-237.
    15. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
    16. Zeng, Y.K. & Zhao, T.S. & Zhou, X.L. & Zeng, L. & Wei, L., 2016. "The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries," Applied Energy, Elsevier, vol. 182(C), pages 204-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:37-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.