IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic9.html
   My bibliography  Save this article

A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics

Author

Listed:
  • Sánchez-Monreal, Juan
  • García-Salaberri, Pablo A.
  • Vera, Marcos

Abstract

This paper presents an isothermal, single-phase model for direct ethanol fuel cells. The ethanol electro-oxidation reaction is described using a detailed kinetic model that is able to predict anode polarization and product selectivity data. The anode kinetic model is coupled to a one-dimensional (1D) description for mass and charge transport across the membrane electrode assembly, which accounts for the mixed potential induced in the cathode catalyst layer by the crossover of ethanol and acetaldehyde. A simple 1D advection model is used to describe the spatial variation of the concentrations of the different species as well as the output and parasitic current densities along the flow channels. The proposed 1D + 1D model includes two adjustable parameters that are fitted by a genetic algorithm in order to reproduce previous experimental data. The calibrated model is then used to investigate the consumption of ethanol and the production, accumulation and consumption of acetaldehyde along the flow channels, which yields the product selectivity at different channel cross-sections. A parametric study is also presented for varying ethanol feed concentrations and flow rates. The results obtained under ethanol starvation conditions highlight the role of acetaldehyde as main free intermediate, which is first produced and later consumed once ethanol is fully depleted. The detailed kinetic description of the ethanol oxidation reaction enables the computation of the four efficiencies (i.e., theoretical, voltage, faradaic, end energy utilization) that characterize the operation of direct ethanol fuel cells, thus allowing to present overall fuel efficiency vs. cell current density curves for the first time.

Suggested Citation

  • Sánchez-Monreal, Juan & García-Salaberri, Pablo A. & Vera, Marcos, 2019. "A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:9
    DOI: 10.1016/j.apenergy.2019.05.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919309134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    2. Gomes, R.S. & De Bortoli, A.L., 2016. "A three-dimensional mathematical model for the anode of a direct ethanol fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1292-1301.
    3. An, L. & Zhao, T.S. & Li, Y.S., 2015. "Carbon-neutral sustainable energy technology: Direct ethanol fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1462-1468.
    4. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    5. García-Salaberri, Pablo A. & Vera, Marcos, 2016. "On the effect of operating conditions in liquid-feed direct methanol fuel cells: A multiphysics modeling approach," Energy, Elsevier, vol. 113(C), pages 1265-1287.
    6. Oliveira, V.B. & Pereira, J.P. & Pinto, A.M.F.R., 2017. "Modeling of passive direct ethanol fuel cells," Energy, Elsevier, vol. 133(C), pages 652-665.
    7. Zakaria, Z. & Kamarudin, S.K. & Timmiati, S.N., 2016. "Membranes for direct ethanol fuel cells: An overview," Applied Energy, Elsevier, vol. 163(C), pages 334-342.
    8. Badwal, S.P.S. & Giddey, S. & Kulkarni, A. & Goel, J. & Basu, S., 2015. "Direct ethanol fuel cells for transport and stationary applications – A comprehensive review," Applied Energy, Elsevier, vol. 145(C), pages 80-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Montevecchi & Maria Cannio & Umberto Cancelli & Andrea Antonelli & Marcello Romagnoli, 2024. "Evaluation of Distillery Fractions in Direct Methanol Fuel Cells and Screening of Reaction Products," Clean Technol., MDPI, vol. 6(2), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    2. Gomes, R.S. & De Bortoli, A.L., 2016. "A three-dimensional mathematical model for the anode of a direct ethanol fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1292-1301.
    3. Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
    4. Zhu, Shengdong & Luo, Fang & Huang, Wenjing & Huang, Wangxiang & Wu, Yuanxin, 2017. "Comparison of three fermentation strategies for alleviating the negative effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on lignocellulosic ethanol production," Applied Energy, Elsevier, vol. 197(C), pages 124-131.
    5. Santiago, Óscar & Navarro, Emilio & Raso, Miguel A. & Leo, Teresa J., 2016. "Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts," Applied Energy, Elsevier, vol. 179(C), pages 497-522.
    6. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    7. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    8. Steil, M.C. & Nobrega, S.D. & Georges, S. & Gelin, P. & Uhlenbruck, S. & Fonseca, F.C., 2017. "Durable direct ethanol anode-supported solid oxide fuel cell," Applied Energy, Elsevier, vol. 199(C), pages 180-186.
    9. Benipal, Neeva & Qi, Ji & Gentile, Jacob C. & Li, Wenzhen, 2017. "Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator," Renewable Energy, Elsevier, vol. 105(C), pages 647-655.
    10. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
    11. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    12. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    13. Soam, Shveta & Kapoor, Manali & Kumar, Ravindra & Borjesson, Pal & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Global warming potential and energy analysis of second generation ethanol production from rice straw in India," Applied Energy, Elsevier, vol. 184(C), pages 353-364.
    14. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    15. Luka Mihanović & Željko Penga & Lei Xing & Viktor Hacker, 2021. "Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(12), pages 1-28, June.
    16. Lin, Jui-Yen & Shih, Yu-Jen & Chen, Po-Yen & Huang, Yao-Hui, 2016. "Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature," Applied Energy, Elsevier, vol. 164(C), pages 1052-1058.
    17. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    18. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    19. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    20. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.