IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920314689.html
   My bibliography  Save this article

Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions

Author

Listed:
  • Hanifi, Hamed
  • Pander, Matthias
  • Zeller, Ulli
  • Ilse, Klemens
  • Dassler, David
  • Mirza, Mark
  • Bahattab, Mohammed A.
  • Jaeckel, Bengt
  • Hagendorf, Christian
  • Ebert, Matthias
  • Gottschalg, Ralph
  • Schneider, Jens

Abstract

The global share of photovoltaic plants in desert locations increases continuously due to inexpensive land and higher yield due to higher irradiation levels. However, PV modules suffer from harsh environmental conditions that influence their lifetime and, consequently, the levelized cost of electricity. Environmental factors such as high temperature differences between nights and days, high ultraviolet doses, high ambient temperatures, and high airborne dust lead to durability and performance issues such as delamination, discoloration, fatigue of interconnection, breakage of solar cells, hot-spots, and power loss due to the soiling. In this work, different bills of materials and module designs are evaluated, targeting optimum PV output power while increasing the service life and performance of the PV modules in desert climates. A stepwise optimization of module components (solar cells, glass coating and polymers/encapsulation) and module design (full vs. half cells, tab widths) are performed by simulation and experimental approaches. Simulations results analyzes the loss mechanisms and electricity production of PV modules by considering the impact of module material and design Experimentally, ultraviolet stress tests and thermal cycling tests are performed for polymer durability and interconnection fatigue analysis. The soiling reduction potential of a newly developed glass coating is investigated by outdoor exposure tests in Saudi-Arabia. It is shown by proper choice of materials and optimized interconnection design, the efficiency of the module is increased by 9.58%rel. relative to the reference module. Furthermore, the choice of encapsulant and module design strongly affect the expected service-life, and soiling losses could be reduced up to 35%.

Suggested Citation

  • Hanifi, Hamed & Pander, Matthias & Zeller, Ulli & Ilse, Klemens & Dassler, David & Mirza, Mark & Bahattab, Mohammed A. & Jaeckel, Bengt & Hagendorf, Christian & Ebert, Matthias & Gottschalg, Ralph & S, 2020. "Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314689
    DOI: 10.1016/j.apenergy.2020.116028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flowers, Mallory E. & Smith, Matthew K. & Parsekian, Ara W. & Boyuk, Dmitriy S. & McGrath, Jenna K. & Yates, Luke, 2016. "Climate impacts on the cost of solar energy," Energy Policy, Elsevier, vol. 94(C), pages 264-273.
    2. Ilse, Klemens K. & Figgis, Benjamin W. & Naumann, Volker & Hagendorf, Christian & Bagdahn, Jörg, 2018. "Fundamentals of soiling processes on photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 239-254.
    3. Hanifi, Hamed & Pfau, Charlotte & Turek, Marko & Schneider, Jens, 2018. "A practical optical and electrical model to estimate the power losses and quantification of different heat sources in silicon based PV modules," Renewable Energy, Elsevier, vol. 127(C), pages 602-612.
    4. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    5. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    6. You, Siming & Lim, Yu Jie & Dai, Yanjun & Wang, Chi-Hwa, 2018. "On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities," Applied Energy, Elsevier, vol. 228(C), pages 1136-1146.
    7. Piliougine, M. & Cañete, C. & Moreno, R. & Carretero, J. & Hirose, J. & Ogawa, S. & Sidrach-de-Cardona, M., 2013. "Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates," Applied Energy, Elsevier, vol. 112(C), pages 626-634.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chao & Huang, Xia & Hu, Xiaoqian & Zhao, Longfeng & Liu, Chao & Ghadimi, Pezhman, 2021. "Trade characteristics, competition patterns and COVID-19 related shock propagation in the global solar photovoltaic cell trade," Applied Energy, Elsevier, vol. 290(C).
    2. Muhammad Afridi & Akash Kumar & Farrukh ibne Mahmood & GovindaSamy TamizhMani, 2023. "Comparative Analysis of Hotspot Stress Endurance in Pristine and Thermal Cycled Prestressed Glass–Glass Photovoltaic Modules," Sustainability, MDPI, vol. 15(16), pages 1-16, August.
    3. Hamed Hanifi & Bengt Jaeckel & Matthias Pander & David Dassler & Sagarika Kumar & Jens Schneider, 2022. "Techno-Economic Assessment of Half-Cell Modules for Desert Climates: An Overview on Power, Performance, Durability and Costs," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Paxis Marques João Roque & Shyama P. D. Chowdhury & Zhongjie Huan, 2021. "Improvement of Stand-Alone Solar PV Systems in the Maputo Region by Adapting Necessary Parameters," Energies, MDPI, vol. 14(14), pages 1-18, July.
    5. Hassan Daher, Daha & Gaillard, Léon & Ménézo, Christophe, 2022. "Experimental assessment of long-term performance degradation for a PV power plant operating in a desert maritime climate," Renewable Energy, Elsevier, vol. 187(C), pages 44-55.
    6. Yun, Min Ju & Sim, Yeon Hyang & Lee, Dong Yoon & Cha, Seung I., 2022. "Reliable Lego®-style assembled stretchable photovoltaic module for 3-dimensional curved surface application," Applied Energy, Elsevier, vol. 323(C).
    7. Yiqing Dai & Yan Yin & Yundi Lu, 2021. "Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-14, October.
    8. Meng, B. & Loonen, R.C.G.M. & Hensen, J.L.M., 2022. "Performance variability and implications for yield prediction of rooftop PV systems – Analysis of 246 identical systems," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Fabiana Lisco & Farwah Bukhari & Soňa Uličná & Kenan Isbilir & Kurt L. Barth & Alan Taylor & John M. Walls, 2020. "Degradation of Hydrophobic, Anti-Soiling Coatings for Solar Module Cover Glass," Energies, MDPI, vol. 13(15), pages 1-15, July.
    3. Micheli, Leonardo & Fernandez, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2020. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," MPRA Paper 104104, University Library of Munich, Germany.
    4. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    5. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    6. Simone Pedrazzi & Giulio Allesina & Alberto Muscio, 2018. "Are Nano-Composite Coatings the Key for Photovoltaic Panel Self-Maintenance: An Experimental Evaluation," Energies, MDPI, vol. 11(12), pages 1-13, December.
    7. Micheli, Leonardo & Fernández, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2021. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," Energy, Elsevier, vol. 215(PA).
    8. Fernández-Solas, Álvaro & Montes-Romero, Jesús & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2022. "Estimation of soiling losses in photovoltaic modules of different technologies through analytical methods," Energy, Elsevier, vol. 244(PB).
    9. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    10. Micheli, Leonardo & Theristis, Marios & Talavera, Diego L. & Almonacid, Florencia & Stein, Joshua S. & Fernández, Eduardo F., 2020. "Photovoltaic cleaning frequency optimization under different degradation rate patterns," Renewable Energy, Elsevier, vol. 166(C), pages 136-146.
    11. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    12. Gizelle C. Oehler & Fabiana Lisco & Farwah Bukhari & Soňa Uličná & Ben Strauss & Kurt L. Barth & John M. Walls, 2020. "Testing the Durability of Anti-Soiling Coatings for Solar Cover Glass by Outdoor Exposure in Denmark," Energies, MDPI, vol. 13(2), pages 1-17, January.
    13. Rahman, Md Momtazur & Khan, Imran & Alameh, Kamal, 2021. "Potential measurement techniques for photovoltaic module failure diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Heinrich, Matthias & Meunier, Simon & Samé, Allou & Quéval, Loïc & Darga, Arouna & Oukhellou, Latifa & Multon, Bernard, 2020. "Detection of cleaning interventions on photovoltaic modules with machine learning," Applied Energy, Elsevier, vol. 263(C).
    15. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Cherupurakal, Nizamudeen & Mozumder, Mohammad Sayem & Mourad, Abdel- Hamid I. & Lalwani, Shubra, 2021. "Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Mithhu, Md. Mahamudul Hasan & Rima, Tahmina Ahmed & Khan, M. Ryyan, 2021. "Global analysis of optimal cleaning cycle and profit of soiling affected solar panels," Applied Energy, Elsevier, vol. 285(C).
    19. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Huang, Wenfeng & Zhou, Kun & Sun, Ke & He, Zhu, 2019. "Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.