IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp334-343.html
   My bibliography  Save this article

Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems

Author

Listed:
  • Bressan, M.
  • Gutierrez, A.
  • Garcia Gutierrez, L.
  • Alonso, C.

Abstract

This work presents an emulation in real-time of the shaded PV systems with a hot-spot prevention. The PV model takes into account the photo-induced current contributions from unshaded and shaded sides thanks to parameters such as the shadow transmittance and the percentage area of the shadows. The use of shadow fault detection in real time is employed avoiding all form of hot-spot formation and PV cells power dissipation. The calculation uses a simple derivative equation able to give the area of detection in function of the PV module voltage. The implementation of the emulator in FPGA takes advantages as a result of their features of adaptability and parallel processing suitable for emulation of complex shading visible on PV systems. The emulation of the proposed PV model and the hot-spot prevention are validated through two experimental tests on PV modules.

Suggested Citation

  • Bressan, M. & Gutierrez, A. & Garcia Gutierrez, L. & Alonso, C., 2018. "Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems," Renewable Energy, Elsevier, vol. 127(C), pages 334-343.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:334-343
    DOI: 10.1016/j.renene.2018.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ko, Suk Whan & Ju, Young Chul & Hwang, Hye Mi & So, Jung Hun & Jung, Young-Seok & Song, Hyung-Jun & Song, Hee-eun & Kim, Soo-Hyun & Kang, Gi Hwan, 2017. "Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode," Energy, Elsevier, vol. 128(C), pages 232-243.
    2. Chine, W. & Mellit, A. & Pavan, A. Massi & Kalogirou, S.A., 2014. "Fault detection method for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 66(C), pages 99-110.
    3. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    4. Silvestre, S. & Boronat, A. & Chouder, A., 2009. "Study of bypass diodes configuration on PV modules," Applied Energy, Elsevier, vol. 86(9), pages 1632-1640, September.
    5. d'Alessandro, Vincenzo & Di Napoli, Fabio & Guerriero, Pierluigi & Daliento, Santolo, 2015. "An automated high-granularity tool for a fast evaluation of the yield of PV plants accounting for shading effects," Renewable Energy, Elsevier, vol. 83(C), pages 294-304.
    6. Bressan, M. & El Basri, Y. & Galeano, A.G. & Alonso, C., 2016. "A shadow fault detection method based on the standard error analysis of I-V curves," Renewable Energy, Elsevier, vol. 99(C), pages 1181-1190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    2. Rico Espinosa, Alejandro & Bressan, Michael & Giraldo, Luis Felipe, 2020. "Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 249-256.
    3. Xiaolei Fu & Yizhi Tian, 2023. "The Study of a Magnetostrictive-Based Shading Detection Method and Device for the Photovoltaic System," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Li, Qingxiang & Zhu, Li & Sun, Yong & Lu, Lin & Yang, Yang, 2020. "Performance prediction of Building Integrated Photovoltaics under no-shading, shading and masking conditions using a multi-physics model," Energy, Elsevier, vol. 213(C).
    5. Wang, Haoxuan & Chen, Huaian & Wang, Ben & Jin, Yi & Li, Guiqiang & Kan, Yan, 2022. "High-efficiency low-power microdefect detection in photovoltaic cells via a field programmable gate array-accelerated dual-flow network," Applied Energy, Elsevier, vol. 318(C).
    6. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    7. Wu, Jing & Zhang, Ling & Liu, Zhongbing & Wu, Zhenghong, 2021. "Coupled optical-electrical-thermal analysis of a semi-transparent photovoltaic glazing façade under building shadow," Applied Energy, Elsevier, vol. 292(C).
    8. Yu, Qiongwan & Hu, Mingke & Li, Junfei & Wang, Yunyun & Pei, Gang, 2020. "Development of a 2D temperature-irradiance coupling model for performance characterizations of the flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 153(C), pages 404-419.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    2. Woo Gyun Shin & Suk Whan Ko & Hyung Jun Song & Young Chul Ju & Hye Mi Hwang & Gi Hwan Kang, 2018. "Origin of Bypass Diode Fault in c-Si Photovoltaic Modules: Leakage Current under High Surrounding Temperature," Energies, MDPI, vol. 11(9), pages 1-11, September.
    3. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    4. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Chong, Benjamin & Zhang, Li, 2017. "Seven indicators variations for multiple PV array configurations under partial shading and faulty PV conditions," Renewable Energy, Elsevier, vol. 113(C), pages 438-460.
    5. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    6. Pareek, Smita & Dahiya, Ratna, 2016. "Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules," Energy, Elsevier, vol. 95(C), pages 561-572.
    7. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    8. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    9. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    10. Dolara, Alberto & Lazaroiu, George Cristian & Leva, Sonia & Manzolini, Giampaolo, 2013. "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, Elsevier, vol. 55(C), pages 466-475.
    11. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    12. Teo, J.C. & Tan, Rodney H.G. & Mok, V.H. & Ramachandaramurthy, Vigna K. & Tan, ChiaKwang, 2020. "Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 191(C).
    13. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    14. Silvestre, Santiago & Kichou, Sofiane & Chouder, Aissa & Nofuentes, Gustavo & Karatepe, Engin, 2015. "Analysis of current and voltage indicators in grid connected PV (photovoltaic) systems working in faulty and partial shading conditions," Energy, Elsevier, vol. 86(C), pages 42-50.
    15. Ko, Suk Whan & Ju, Young Chul & Hwang, Hye Mi & So, Jung Hun & Jung, Young-Seok & Song, Hyung-Jun & Song, Hee-eun & Kim, Soo-Hyun & Kang, Gi Hwan, 2017. "Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode," Energy, Elsevier, vol. 128(C), pages 232-243.
    16. Motab Turki Almousa & Mohamed R. Gomaa & Mostafa Ghasemi & Mohamed Louzazni, 2024. "Single-Sensor Global MPPT for PV System Interconnected with DC Link Using Recent Red-Tailed Hawk Algorithm," Energies, MDPI, vol. 17(14), pages 1-17, July.
    17. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    18. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    19. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    20. Odysseas Tsafarakis & Kostas Sinapis & Wilfried G. J. H. M. van Sark, 2019. "A Time-Series Data Analysis Methodology for Effective Monitoring of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 12(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:334-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.