IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp215-220.html
   My bibliography  Save this article

Novel strategies for glucose production from biomass using heteropoly acid catalyst

Author

Listed:
  • Nayak, Abhishek
  • Pulidindi, Indra Neel
  • Rao, Chinta Sankar

Abstract

Bioethanol and direct glucose fuel cells pledged clean energy to the world. Cellulose depolymerization for glucose production has been a successful approach in bioethanol production. Heteropoly acids (HPAs) are strong Brønsted solid acid catalysts for biomass hydrolysis. Keggin type HPAs, namely, Silicotungstic acid (HSiW), Phosphotungstic acid (HPW), and Phosphomolybdic acid (HPMo), were used for the hydrolysis of lignocellulosic biomass to glucose. Five different biomass feedstocks, namely, miscanthus, sugarcane leaves, switchgrass, sunflower seeds, and bamboo leaves, were examined for the feasibility of total reducing sugar (TRS) yield through the composition analysis and catalytic biomass hydrolysis. Sunflower seeds contained the maximum holocellulose with 90.6%, and switchgrass contained the least i.e., 77.63%. Among the five biomass tested, switchgrass resulted in the highest TRS (5.77 wt/dry wt. %) with HPMo catalyst at a catalyst to biomass ratio of 30:100 (wt./wt. %), a reaction temperature of 120 °C for 3 h. The reaction parameters for depolymerization were optimized for all three HPAs, and the optimized conditions were 3 h and 120 °C. HPMo showed maximum TRS yield (5.77 wt/dry wt.%) among the three HPAs at 30:100 catalyst to biomass ratio. However, a catalyst to biomass ratio of 20:100 (wt./wt.%) was economical (5.25 wt/dry wt.%) for commercial application.

Suggested Citation

  • Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:215-220
    DOI: 10.1016/j.renene.2020.05.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    3. Intaramas, Kanpichcha & Jonglertjunya, Woranart & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2018. "Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis," Energy, Elsevier, vol. 149(C), pages 837-847.
    4. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    5. Indra Neel Pulidindi & Tae Hyun Kim, 2018. "Conversion of Levulinic Acid from Various Herbaceous Biomass Species Using Hydrochloric Acid and Effects of Particle Size and Delignification," Energies, MDPI, vol. 11(3), pages 1-12, March.
    6. Tan, Inn Shi & Lee, Keat Teong, 2014. "Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study," Energy, Elsevier, vol. 78(C), pages 53-62.
    7. Kumar, Vijay Bhooshan & Pulidindi, Indra Neel & Gedanken, Aharon, 2015. "Selective conversion of starch to glucose using carbon based solid acid catalyst," Renewable Energy, Elsevier, vol. 78(C), pages 141-145.
    8. Pulidindi, Indra Neel & Kimchi, Baruchi B. & Gedanken, Aharon, 2014. "Can cellulose be a sustainable feedstock for bioethanol production?," Renewable Energy, Elsevier, vol. 71(C), pages 77-80.
    9. Zhong, Yuan & Frost, Henry & Bustamante, Mauricio & Li, Song & Liu, Yan Susie & Liao, Wei, 2020. "A mechano-biocatalytic one-pot approach to release sugars from lignocellulosic materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mondal, Sourav & Neogi, Swati & Chakraborty, Saikat, 2024. "Optimization of reactor parameters for amplifying synergy in enzymatic co-hydrolysis and microbial co-fermentation of lignocellulosic agro-residues," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    2. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    3. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    4. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    5. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    6. Kumar, Vinod & Nanda, Manisha & Joshi, H.C. & Singh, Ajay & Sharma, Sonal & Verma, Monu, 2018. "Production of biodiesel and bioethanol using algal biomass harvested from fresh water river," Renewable Energy, Elsevier, vol. 116(PA), pages 606-612.
    7. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    9. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    10. Michailos, Stavros & Parker, David & Webb, Colin, 2017. "Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation," MPRA Paper 87640, University Library of Munich, Germany.
    11. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Hafid, Halimatun Saadiah & Rahman, Nor’ Aini Abdul & Shah, Umi Kalsom Md & Baharuddin, Azhari Samsu & Ariff, Arbakariya B., 2017. "Feasibility of using kitchen waste as future substrate for bioethanol production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 671-686.
    13. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    15. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    17. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).
    18. Tran Dang Xuan & Nguyen Thi Phuong & Do Tan Khang & Tran Dang Khanh, 2015. "Influence of Sowing Times, Densities, and Soils to Biomass and Ethanol Yield of Sweet Sorghum," Sustainability, MDPI, vol. 7(9), pages 1-22, August.
    19. Carrillo-Nieves, Danay & Rostro Alanís, Magdalena J. & de la Cruz Quiroz, Reynaldo & Ruiz, Héctor A. & Iqbal, Hafiz M.N. & Parra-Saldívar, Roberto, 2019. "Current status and future trends of bioethanol production from agro-industrial wastes in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 63-74.
    20. Mohapatra, Sonali & Mishra, Chinmaya & Behera, Sudhansu S. & Thatoi, Hrudayanath, 2017. "Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1007-1032.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:215-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.