IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221030310.html
   My bibliography  Save this article

Screening analysis and unconstrained optimization of a small-scale vertical axis wind turbine

Author

Listed:
  • Trentin, Pedro Francisco Silva
  • Martinez, Pedro Henrique Barsanaor de Barros
  • dos Santos, Gabriel Bertacco
  • Gasparin, Elóy Esteves
  • Salviano, Leandro Oliveira

Abstract

The demand for alternative and renewable energy sources has been substantially growing in recent years, mainly steered by economic and environmental inconveniences of conventional energy sources, such as oil and its derivatives. In this context, wind energy has emerged as an attractive renewable source, envisioning possibilities of developing more efficient equipment to meet the ever-growing energy demand. In this work, we coupled Computational Fluid Dynamics (CFD) with an optimization based on response surface (RS) methodologies to find an optimal design for a small-scale NACA 0021 Darrieus vertical axis wind turbine (VAWT) operating at a tip speed ratio of 2.63. For that, we investigated four geometric parameters: number of blades (N), rotor diameter (D), chord length (c), and pitch angle (β). For the numerical model, we considered a two-dimensional, incompressible, turbulent, and unsteady flow regime. A sensitivity analysis (SA) via Morris’ method was performed to identify the influence of the four geometric parameters on the turbine aerodynamic performance. Our results reveal that the pitch angle (β) contributes the most (58%) to the turbine performance. The resulting optimized turbine design increased the conversion efficiency by 40%. Additionally, we also present a detailed discussion on the flow phenomenology considering the impact of each one of the four geometric parameters on the power coefficient. Finally, the strategy adopted here, in which a qualitative sensitivity analysis combined to the response surface and unconstrained optimization, was shown to be robust and can be applied to high-dimensional and computational-expensive CFD models to reduce costs with adequate results regarding fluid flow phenomena.

Suggested Citation

  • Trentin, Pedro Francisco Silva & Martinez, Pedro Henrique Barsanaor de Barros & dos Santos, Gabriel Bertacco & Gasparin, Elóy Esteves & Salviano, Leandro Oliveira, 2022. "Screening analysis and unconstrained optimization of a small-scale vertical axis wind turbine," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030310
    DOI: 10.1016/j.energy.2021.122782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
    2. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    3. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    4. Joo, Sungjun & Choi, Heungsoap & Lee, Juhee, 2015. "Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds," Energy, Elsevier, vol. 90(P1), pages 439-451.
    5. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    6. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    7. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    8. Ben Touhami, Haythem & Lardy, Romain & Barra, Vincent & Bellocchi, Gianni, 2013. "Screening parameters in the Pasture Simulation model using the Morris method," Ecological Modelling, Elsevier, vol. 266(C), pages 42-57.
    9. Hashem, I. & Mohamed, M.H., 2018. "Aerodynamic performance enhancements of H-rotor Darrieus wind turbine," Energy, Elsevier, vol. 142(C), pages 531-545.
    10. Chen, Yaoran & Su, Jie & Han, Zhaolong & Zhao, Yongsheng & Zhou, Dai & Yang, He & Bao, Yan & Lei, Hang, 2020. "A shape optimization of ϕ-shape Darrieus wind turbine under a given range of inlet wind speed," Renewable Energy, Elsevier, vol. 159(C), pages 286-299.
    11. Trivellato, F. & Raciti Castelli, M., 2014. "On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis," Renewable Energy, Elsevier, vol. 62(C), pages 53-62.
    12. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    13. Chen, Wei-Hsin & Chen, Ching-Ying & Huang, Chun-Yen & Hwang, Chii-Jong, 2017. "Power output analysis and optimization of two straight-bladed vertical-axis wind turbines," Applied Energy, Elsevier, vol. 185(P1), pages 223-232.
    14. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    15. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    16. Bedon, Gabriele & Raciti Castelli, Marco & Benini, Ernesto, 2013. "Optimization of a Darrieus vertical-axis wind turbine using blade element – momentum theory and evolutionary algorithm," Renewable Energy, Elsevier, vol. 59(C), pages 184-192.
    17. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Ge, Qiao & Ciuffo, Biagio & Menendez, Monica, 2015. "Combining screening and metamodel-based methods: An efficient sequential approach for the sensitivity analysis of model outputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 334-344.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    2. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    3. Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
    4. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    5. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    6. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    7. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    8. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    9. Dessoky, Amgad & Bangga, Galih & Lutz, Thorsten & Krämer, Ewald, 2019. "Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology," Energy, Elsevier, vol. 175(C), pages 76-97.
    10. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    11. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    12. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    13. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    14. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    15. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    16. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    17. Huang, Huilan & Luo, Jiabin & Li, Gang, 2023. "Study on the optimal design of vertical axis wind turbine with novel variable solidity type for self-starting capability and aerodynamic performance," Energy, Elsevier, vol. 271(C).
    18. Dessoky, Amgad & Lutz, Thorsten & Bangga, Galih & Krämer, Ewald, 2019. "Computational studies on Darrieus VAWT noise mechanisms employing a high order DDES model," Renewable Energy, Elsevier, vol. 143(C), pages 404-425.
    19. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    20. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.