IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp497-503.html
   My bibliography  Save this article

A study on electrochemical hydrogen storage performance of β-copper phthalocyanine rectangular nanocuboids

Author

Listed:
  • Salehabadi, Ali
  • Morad, Norhashimah
  • Ahmad, Mardiana Idayu

Abstract

Hydrogen energy storage has been considered as a key enabler for exploring novel materials with unique structures and properties, however, inadequate storage capacity, and instability leading to low performances. Metal organic compounds contain a core transition metal ion in accordance to their organic environment, allowing localized and enhanced hydrogen storage. Here, we show a superior hydrogen storage system, with around 1850 mAh/g discharge capacity and around 74% charge-discharge efficiency, performing rectangular nanocuboids beta copper phthalocyanine (β-CuPc). Primarily, β-CuPc has been synthesized in ethylene glycol (EG) via stepwise thermal treatments up to ∼185 °C with demonstrating its morphological and structural properties. Interestingly, unique surface morphology of as-synthesized β-CuPc (with about 163 nm width and 47 nm height) comes to our preliminary expectations as a relevant host for hydrogen sorption. Our work can expand into the classes of materials that can be used efficiently in hydrogen storage technology, and also opening a new channel to the wide range of mobile applications, either in academia or industries.

Suggested Citation

  • Salehabadi, Ali & Morad, Norhashimah & Ahmad, Mardiana Idayu, 2020. "A study on electrochemical hydrogen storage performance of β-copper phthalocyanine rectangular nanocuboids," Renewable Energy, Elsevier, vol. 146(C), pages 497-503.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:497-503
    DOI: 10.1016/j.renene.2019.06.176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931016X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yanghuan & Zhang, Wei & Bu, Wengang & Cai, Ying & Qi, Yan & Guo, Shihai, 2019. "Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling," Renewable Energy, Elsevier, vol. 132(C), pages 167-175.
    2. Arkan, Foroogh & Izadyar, Mohammad, 2018. "Recent theoretical progress in the organic/metal-organic sensitizers as the free dyes, dye/TiO2 and dye/electrolyte systems; Structural modifications and solvent effects on their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 609-655.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    2. Yong, Hui & Guo, Shihai & Yuan, Zeming & Qi, Yan & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy," Renewable Energy, Elsevier, vol. 157(C), pages 828-839.
    3. Yong, Hui & Wei, Xin & Hu, Jifan & Yuan, Zeming & Wu, Ming & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy," Renewable Energy, Elsevier, vol. 162(C), pages 2153-2165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:497-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.