IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i7p2668-2704.html
   My bibliography  Save this article

Energy, exergy, economic, environmental, advanced exergy and exergoeconomic (extended exergy) analysis of hybrid wind-solar power plant

Author

Listed:
  • Hardik K. Jani
  • Surendra Singh Kachhwaha
  • Garlapati Nagababu
  • Alok Das
  • MA Ehyaei

Abstract

Aiming to net-zero emissions, hybrid power generation through renewable means has gained substantial attention across the globe. Considering the stochastic nature of renewable energy resources, a comprehensive performance assessment is a must prior to project development. Present work is a novel multidimensional 6E analysis (energy, exergy, economic, environmental, advanced exergy, and exergoeconomic) to evaluate the performance of hybrid wind-solar energy systems. The analysis is performed using long-tern (41 years) high-resolution ERA5 reanalysis resource data and the mathematical modeling by means of MATLAB R2018a computation software. The long-term data facilitates reliable and precise predictions of resource availability, power generation, and system performance during the lifespan of the project. The performance of HWSES in terms of capacity factor and exergy efficiency is computed to be 9.6–35.5% and 4.7–10.4% respectively, whereas the extended exergy efficiency lies in the range of 3.39–5.79%. Hybridizing wind power projects with solar power enhances the overall system capacity factor, exergy efficiency, and extended exergy efficiency by 3.46%, 5.12%, and 2.87% respectively. Hence, the hybridization leads to superior year-round system performance with smaller power fluctuations than the standalone systems. Further, wind, solar and hybrid systems would annually reduce the Specific Emission Reduction of 1128 tone/kW, 1685 tone/kW, and 1407tone/kW respectively. The present research will be helpful to the policy-makers and the project developers in the project feasibility study of hybrid energy systems.

Suggested Citation

  • Hardik K. Jani & Surendra Singh Kachhwaha & Garlapati Nagababu & Alok Das & MA Ehyaei, 2023. "Energy, exergy, economic, environmental, advanced exergy and exergoeconomic (extended exergy) analysis of hybrid wind-solar power plant," Energy & Environment, , vol. 34(7), pages 2668-2704, November.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:7:p:2668-2704
    DOI: 10.1177/0958305X221115095
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X221115095
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X221115095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khosravi, A. & Koury, R.N.N. & Machado, L. & Pabon, J.J.G., 2018. "Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system," Energy, Elsevier, vol. 148(C), pages 1087-1102.
    2. Luis Oliveros-Cano & Juan Salgado-Meza & Carlos Robles-Algar n, 2020. "Technical-Economic-Environmental Analysis for the Implementation of Hybrid Energy Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 57-64.
    3. Ramli, Makbul A.M. & Hiendro, Ayong & Al-Turki, Yusuf A., 2016. "Techno-economic energy analysis of wind/solar hybrid system: Case study for western coastal area of Saudi Arabia," Renewable Energy, Elsevier, vol. 91(C), pages 374-385.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    3. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    4. Fadlallah, Sulaiman O. & Benhadji Serradj, Djamal Eddine & Sedzro, Delight M., 2021. "Is this the right time for Sudan to replace diesel-powered generator systems with wind turbines?," Renewable Energy, Elsevier, vol. 180(C), pages 40-54.
    5. Chen, Scarlett & Kumar, Anikesh & Wong, Wee Chin & Chiu, Min-Sen & Wang, Xiaonan, 2019. "Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies," Applied Energy, Elsevier, vol. 233, pages 321-337.
    6. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    7. Puxin Liu, 2023. "An assessment of financial mechanisms for green financial recovery and climate change mitigation: the case of China," Economic Change and Restructuring, Springer, vol. 56(3), pages 1567-1584, June.
    8. Khosravi, Ali & Malekan, Mohammad & Assad, Mamdouh E.H., 2019. "Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector," Renewable Energy, Elsevier, vol. 134(C), pages 54-63.
    9. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    10. Mohammed Kharrich & Salah Kamel & Ali S. Alghamdi & Ahmad Eid & Mohamed I. Mosaad & Mohammed Akherraz & Mamdouh Abdel-Akher, 2021. "Optimal Design of an Isolated Hybrid Microgrid for Enhanced Deployment of Renewable Energy Sources in Saudi Arabia," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    11. Sheikh Md. Nahid Hasan & Shameem Ahmad & Abrar Fahim Liaf & A. G. M. B. Mustayen & M. M. Hasan & Tofael Ahmed & Sujan Howlader & Mahamudul Hassan & Mohammad Rafiqul Alam, 2024. "Techno-Economic Performance and Sensitivity Analysis of an Off-Grid Renewable Energy-Based Hybrid System: A Case Study of Kuakata, Bangladesh," Energies, MDPI, vol. 17(6), pages 1-28, March.
    12. Hou, Xiaojiang & Wang, Yi & Yang, Yanling & Hu, Rui & Yang, Guang & Feng, Lei & Suo, Guoquan, 2019. "Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys," Energy, Elsevier, vol. 188(C).
    13. Gaydaa Al Zohbi & Fahad Gallab AlAmri, 2024. "Current Situation of Renewable Energy in Saudi Arabia: Opportunities and Challenges," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 13(2), pages 1-98, July.
    14. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    15. Yong, Hui & Guo, Shihai & Yuan, Zeming & Qi, Yan & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy," Renewable Energy, Elsevier, vol. 157(C), pages 828-839.
    16. Eslami, M. & Nahani, P., 2021. "How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization," Utilities Policy, Elsevier, vol. 72(C).
    17. Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
    18. Kar, Sanjay Kumar & Sharma, Atul & Roy, Biswajit, 2016. "Solar energy market developments in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 121-133.
    19. Maximilian Parzen & Fabian Neumann & Addrian H. Van Der Weijde & Daniel Friedrich & Aristides Kiprakis, 2021. "Beyond cost reduction: Improving the value of energy storage in electricity systems," Papers 2101.10092, arXiv.org, revised Jul 2022.
    20. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:7:p:2668-2704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.