IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v72y2021ics0957178721000886.html
   My bibliography  Save this article

How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization

Author

Listed:
  • Eslami, M.
  • Nahani, P.

Abstract

This study investigates the effects of different policies on the feasibility of residential photovoltaic and wind turbine investment in different cities of Iran. Results show that the increase of feed-in tariff in 2019 is satisfactory in several cities. Other proposed investment incentives are also explored. Self-consumption analysis elucidates that wind turbine installation in Bushehr can be employed as off-grid systems. Granting a loan to domestic investors can also enhance net present value by 172 and 122 million-IRRs for photovoltaic and wind systems, respectively. A hybrid optimization is also introduced to manage the available land and budget efficiently.

Suggested Citation

  • Eslami, M. & Nahani, P., 2021. "How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization," Utilities Policy, Elsevier, vol. 72(C).
  • Handle: RePEc:eee:juipol:v:72:y:2021:i:c:s0957178721000886
    DOI: 10.1016/j.jup.2021.101254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178721000886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2021.101254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tantisattayakul, Thanapol & Kanchanapiya, Premrudee, 2017. "Financial measures for promoting residential rooftop photovoltaics under a feed-in tariff framework in Thailand," Energy Policy, Elsevier, vol. 109(C), pages 260-269.
    2. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    3. De Boeck, L. & Van Asch, S. & De Bruecker, P. & Audenaert, A., 2016. "Comparison of support policies for residential photovoltaic systems in the major EU markets through investment profitability," Renewable Energy, Elsevier, vol. 87(P1), pages 42-53.
    4. Hosseinalizadeh, Ramin & Shakouri G, Hamed & Amalnick, Mohsen Sadegh & Taghipour, Peyman, 2016. "Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 139-150.
    5. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
    6. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    7. Dabbaghiyan, Amir & Fazelpour, Farivar & Abnavi, Mohhamadreza Dehghan & Rosen, Marc A., 2016. "Evaluation of wind energy potential in province of Bushehr, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 455-466.
    8. Avril, S. & Mansilla, C. & Busson, M. & Lemaire, T., 2012. "Photovoltaic energy policy: Financial estimation and performance comparison of the public support in five representative countries," Energy Policy, Elsevier, vol. 51(C), pages 244-258.
    9. Guangqian, Du & Bekhrad, Kaveh & Azarikhah, Pouria & Maleki, Akbar, 2018. "A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems," Renewable Energy, Elsevier, vol. 122(C), pages 551-560.
    10. Khosravi, A. & Koury, R.N.N. & Machado, L. & Pabon, J.J.G., 2018. "Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system," Energy, Elsevier, vol. 148(C), pages 1087-1102.
    11. Duman, A. Can & Güler, Önder, 2020. "Economic analysis of grid-connected residential rooftop PV systems in Turkey," Renewable Energy, Elsevier, vol. 148(C), pages 697-711.
    12. Kaygusuz, Kamil, 2002. "Environmental impacts of energy utilisation and renewable energy policies in Turkey," Energy Policy, Elsevier, vol. 30(8), pages 689-698, June.
    13. Rullo, P. & Braccia, L. & Luppi, P. & Zumoffen, D. & Feroldi, D., 2019. "Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 140(C), pages 436-451.
    14. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    15. Tongsopit, Sopitsuda & Junlakarn, Siripha & Wibulpolprasert, Wichsinee & Chaianong, Aksornchan & Kokchang, Phimsupha & Hoang, Nghia Vu, 2019. "The economics of solar PV self-consumption in Thailand," Renewable Energy, Elsevier, vol. 138(C), pages 395-408.
    16. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin & Lyden, Sarah, 2019. "High penetration renewable generation within Australian isolated and remote power systems," Energy, Elsevier, vol. 168(C), pages 684-692.
    17. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    18. Firouzjah, Khalil Gorgani, 2018. "Assessment of small-scale solar PV systems in Iran: Regions priority, potentials and financial feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 267-274.
    19. Mohammadi, Kasra & Naderi, Mahmoud & Saghafifar, Mohammad, 2018. "Economic feasibility of developing grid-connected photovoltaic plants in the southern coast of Iran," Energy, Elsevier, vol. 156(C), pages 17-31.
    20. Hadidian Moghaddam, Mohammad Jafar & Kalam, Akhtar & Nowdeh, Saber Arabi & Ahmadi, Abdollah & Babanezhad, Manoochehr & Saha, Sajeeb, 2019. "Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 1412-1434.
    21. Mazzeo, Domenico & Matera, Nicoletta & De Luca, Pierangelo & Baglivo, Cristina & Maria Congedo, Paolo & Oliveti, Giuseppe, 2020. "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates," Applied Energy, Elsevier, vol. 276(C).
    22. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    23. Mazzeo, Domenico & Oliveti, Giuseppe & Baglivo, Cristina & Congedo, Paolo M., 2018. "Energy reliability-constrained method for the multi-objective optimization of a photovoltaic-wind hybrid system with battery storage," Energy, Elsevier, vol. 156(C), pages 688-708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Klimkiewicz & Anna Dubel & Katarzyna Południak-Gierz, 2023. "Supporting Environmentally Conscious Consumer Sales Law by Life-cycle Thinking," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 17(2), June.
    2. Yang, Changhui & Jiang, Qi & Cui, Yangyu & He, Lijun, 2023. "Photovoltaic project investment based on the real options method: An analysis of the East China power grid region," Utilities Policy, Elsevier, vol. 80(C).
    3. Wenya Xu & Yanxue Li & Guanjie He & Yang Xu & Weijun Gao, 2023. "Performance Assessment and Comparative Analysis of Photovoltaic-Battery System Scheduling in an Existing Zero-Energy House Based on Reinforcement Learning Control," Energies, MDPI, vol. 16(13), pages 1-19, June.
    4. Milstein, Irena & Tishler, Asher & Woo, Chi-Keung, 2022. "Wholesale electricity market economics of solar generation in Israel," Utilities Policy, Elsevier, vol. 79(C).
    5. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Xing-Min & Kireeva, Natalia & Timoshin, A.V. & Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Kamyab, Hesam, 2021. "A multi-criteria framework for designing of stand-alone and grid-connected photovoltaic, wind, battery clean energy system considering reliability and economic assessment," Energy, Elsevier, vol. 224(C).
    2. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    3. Ghandehariun, Samane & Ghandehariun, Amir M. & Ziabari, Nima Bahrami, 2023. "Performance prediction and optimization of a hybrid renewable-energy-based multigeneration system using machine learning," Energy, Elsevier, vol. 282(C).
    4. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    5. Toopshekan, Ashkan & Abedian, Ali & Azizi, Arian & Ahmadi, Esmaeil & Vaziri Rad, Mohammad Amin, 2023. "Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm," Energy, Elsevier, vol. 285(C).
    6. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    8. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Alhammami, Hasan & An, Heungjo, 2021. "Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 167(C), pages 359-368.
    10. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    11. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    12. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    13. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    14. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    15. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    16. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    17. Tanoto, Yusak, 2023. "Cost-reliability trade-offs for grid-connected rooftop PV in emerging economies: A case of Indonesia's urban residential households," Energy, Elsevier, vol. 285(C).
    18. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    19. Paolo Maria Congedo & Cristina Baglivo & Simone Panico & Domenico Mazzeo & Nicoletta Matera, 2022. "Optimization of Micro-CAES and TES Systems for Trigeneration," Energies, MDPI, vol. 15(17), pages 1-14, August.
    20. Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:72:y:2021:i:c:s0957178721000886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.