IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10600.html
   My bibliography  Save this article

High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes

Author

Listed:
  • Hyeongwook Im

    (School of Mechanical and Aerospace Engineering, Seoul National University)

  • Taewoo Kim

    (School of Mechanical and Aerospace Engineering, Seoul National University)

  • Hyelynn Song

    (School of Mechanical and Aerospace Engineering, Seoul National University)

  • Jongho Choi

    (School of Mechanical and Aerospace Engineering, Seoul National University)

  • Jae Sung Park

    (Institute of Advanced Machinery and Design, Seoul National University)

  • Raquel Ovalle-Robles

    (Nano-Science & Technology Center, Lintec of America, Inc.)

  • Hee Doo Yang

    (College of Nanoscience and Nanotechnology, Pusan National University)

  • Kenneth D. Kihm

    (Aerospace and Biomedical Engineering, University of Tennessee)

  • Ray H. Baughman

    (Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas)

  • Hong H. Lee

    (School of Chemical and Biological Engineering, Seoul National University)

  • Tae June Kang

    (INHA University)

  • Yong Hyup Kim

    (School of Mechanical and Aerospace Engineering, Seoul National University
    Institute of Advanced Aerospace Technology, Seoul National University)

Abstract

Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m−2 is obtained for a 51 °C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated.

Suggested Citation

  • Hyeongwook Im & Taewoo Kim & Hyelynn Song & Jongho Choi & Jae Sung Park & Raquel Ovalle-Robles & Hee Doo Yang & Kenneth D. Kihm & Ray H. Baughman & Hong H. Lee & Tae June Kang & Yong Hyup Kim, 2016. "High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10600
    DOI: 10.1038/ncomms10600
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10600
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lianhui Li & Sijia Feng & Yuanyuan Bai & Xianqing Yang & Mengyuan Liu & Mingming Hao & Shuqi Wang & Yue Wu & Fuqin Sun & Zheng Liu & Ting Zhang, 2022. "Enhancing hydrovoltaic power generation through heat conduction effects," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Shucheng Wang & Liuyang Han & Hanxiao Liu & Ying Dong & Xiaohao Wang, 2022. "Ionic Gelatin-Based Flexible Thermoelectric Generator with Scalability for Human Body Heat Harvesting," Energies, MDPI, vol. 15(9), pages 1-18, May.
    3. Isuru E. Gunathilaka & Jennifer M. Pringle & Luke A. O’Dell, 2021. "Operando magnetic resonance imaging for mapping of temperature and redox species in thermo-electrochemical cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Denis Artyukhov & Nikolay Gorshkov & Maria Vikulova & Nikolay Kiselev & Artem Zemtsov & Ivan Artyukhov, 2022. "Power Supply of Wireless Sensors Based on Energy Conversion of Separated Gas Flows by Thermoelectrochemical Cells," Energies, MDPI, vol. 15(4), pages 1-16, February.
    5. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    6. Jung, Sang-Mun & Kwon, Jaesub & Lee, Jinhyeon & Lee, Byung-Jo & Kim, Kyu-Su & Yu, Dong-Seok & Kim, Yong-Tae, 2021. "Hybrid thermo-electrochemical energy harvesters for conversion of low-grade thermal energy into electricity via tungsten electrodes," Applied Energy, Elsevier, vol. 299(C).
    7. Burmistrov, Igor & Gorshkov, Nikolay & Kovyneva, Natalya & Kolesnikov, Evgeny & Khaidarov, Bekzod & Karunakaran, Gopalu & Cho, Eun-Bum & Kiselev, Nikolay & Artyukhov, Denis & Kuznetsov, Denis & Gorokh, 2020. "High seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes," Renewable Energy, Elsevier, vol. 157(C), pages 1-8.
    8. Shi, Yu & Zhang, Liang & Li, Jun & Fu, Qian & Zhu, Xun & Liao, Qiang & Zhang, Yongsheng, 2020. "Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity," Renewable Energy, Elsevier, vol. 159(C), pages 162-171.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.