IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp883-892.html
   My bibliography  Save this article

One-pot synthesis of bio-fuel additives from glycerol and benzyl alcohol: Mesoporous MCM-41 supported iron (III) chloride as a highly efficient tandem catalyst

Author

Listed:
  • Samudrala, Shanthi Priya
  • Kandasamy, Shalini
  • Bhattacharya, Sankar

Abstract

The demand for renewable resources, surplus availability, low cost and lower environmental impact has led to the utilization of bio-glycerol into high-value derivatives and functional chemicals for sustainability of the bio-diesel industry. The production of bio-fuel additives is of great interest as there is a gradual shift from petro-based chemicals to green chemicals. This work involves the direct synthesis of oxygenated fuel additives, 1,3-dioxalane and 1,3-dioxane from glycerol and benzyl alcohol over FeCl3/MCM-41 catalyst. The reaction progresses successfully to produce 1,3-dioxalane primarily by in-situ oxidation of benzyl alcohol to benzaldehyde and subsequent condensation reaction of benzaldehyde with glycerol. Glycerol primarily acted as green solvent to facilitate the oxidation of benzyl alcohol to benzaldehyde and as a fuel additive precursor to produce 1,3-dioxalane in the preceding reaction. FeCl3/MCM-41 catalyst presented high performance achieving 92% glycerol conversion with 75% selectivity to 1,3-dioxalane in a reaction performed at 100 °C for 60 min.

Suggested Citation

  • Samudrala, Shanthi Priya & Kandasamy, Shalini & Bhattacharya, Sankar, 2020. "One-pot synthesis of bio-fuel additives from glycerol and benzyl alcohol: Mesoporous MCM-41 supported iron (III) chloride as a highly efficient tandem catalyst," Renewable Energy, Elsevier, vol. 156(C), pages 883-892.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:883-892
    DOI: 10.1016/j.renene.2020.04.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayoub, Muhammad & Abdullah, Ahmad Zuhairi, 2012. "Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2671-2686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Komal & Pathak, Shailesh & Upadhyayula, Sreedevi, 2021. "Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis," Renewable Energy, Elsevier, vol. 167(C), pages 282-293.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    2. Erna Astuti & Supranto Supranto & Rochmadi Rochmadi & Agus Prasetya & Krister Strom & Bengt Andersson, 2014. "Kinetic Modeling of Nitration of Glycerol," Modern Applied Science, Canadian Center of Science and Education, vol. 8(2), pages 1-78, April.
    3. Da Seul Kong & Eun Joo Park & Sakuntala Mutyala & Minsoo Kim & Yunchul Cho & Sang Eun Oh & Changman Kim & Jung Rae Kim, 2021. "Bioconversion of Crude Glycerol into 1,3-Propanediol(1,3-PDO) with Bioelectrochemical System and Zero-Valent Iron Using Klebsiella pneumoniae L17," Energies, MDPI, vol. 14(20), pages 1-10, October.
    4. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    5. Okoye, P.U. & Hameed, B.H., 2016. "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 558-574.
    6. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.
    7. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.
    8. Jan Sprafke & Vicky Shettigondahalli Ekanthalu & Michael Nelles, 2020. "Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions," Sustainability, MDPI, vol. 12(22), pages 1-14, November.
    9. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    10. Pachapur, Vinayak Laxman & Sarma, Saurabh Jyoti & Brar, Satinder Kaur & Le Bihan, Yann & Buelna, Gerardo & Verma, Mausam, 2016. "Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum," Renewable Energy, Elsevier, vol. 95(C), pages 542-551.
    11. Abdul Ghani, Ahmad & Torabi, Farshid & Ibrahim, Hussameldin, 2018. "Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses," Energy, Elsevier, vol. 144(C), pages 129-145.
    12. Hunsom, Mali & Saila, Payia, 2015. "Electrochemical conversion of enriched crude glycerol: Effect of operating parameters," Renewable Energy, Elsevier, vol. 74(C), pages 227-236.
    13. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Hejna, Aleksander & Kosmela, Paulina & Formela, Krzysztof & Piszczyk, Łukasz & Haponiuk, Józef T., 2016. "Potential applications of crude glycerol in polymer technology–Current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 449-475.
    15. Ardi, M.S. & Aroua, M.K. & Hashim, N. Awanis, 2015. "Progress, prospect and challenges in glycerol purification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1164-1173.
    16. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    17. Lapuerta, Magín & Rodríguez-Fernández, José & García-Contreras, Reyes, 2015. "Effect of a glycerol-derived advanced biofuel –FAGE (fatty acid formal glycerol ester)– on the emissions of a diesel engine tested under the New European Driving Cycle," Energy, Elsevier, vol. 93(P1), pages 568-579.
    18. Cansino, JM & Cardenete, MA & González-Limón, JM & Román, R, 2013. "Economic impacts of biofuels deployment in Andalusia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 274-282.
    19. Tangkathitipong, Pranee & Intanoo, Patcharee & Butpan, Janyawan & Chavadej, Sumaeth, 2017. "Separate production of hydrogen and methane from biodiesel wastewater with added glycerin by two-stage anaerobic sequencing batch reactors (ASBR)," Renewable Energy, Elsevier, vol. 113(C), pages 1077-1085.
    20. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:883-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.