IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp158-172.html
   My bibliography  Save this article

Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis

Author

Listed:
  • Štefan, David
  • Rossi, Mosè
  • Hudec, Martin
  • Rudolf, Pavel
  • Nigro, Alessandra
  • Renzi, Massimiliano

Abstract

This work presents a detailed analysis of the three-dimensional flows in a Pump-as-Turbine (PaT). The flow field is studied through URANS simulations and a velocity vector analysis. Moreover, a prediction model is used to forecast the performance of the PaT. The results of these methodologies were validated using experimental results. Flow rate and head at Best Efficiency Point (BEP) in turbine mode were 27% and 41% higher than the ones in pump mode, respectively; the mechanical efficiency was 4% lower. To give a fluid flow interpretation of this behaviour, velocity triangles in turbine mode were analytically calculated, as well as numerically evaluated. The analytically identified PaT flow rate at BEP is in agreement with CFD and measurements. Only small differences appear, which might be explained by three reasons: i) the real flow angle is influenced by the finite number of blades and their thickness, ii) the PaT leading edge has a sharp ending since the impeller is designed to operate only in pump mode and iii) tapering of the meridional cross-section from volute to impeller. While close to the BEP the mechanical efficiency is flat, a sensible drop caused by flow detachments and swirling flows was detected at part-load.

Suggested Citation

  • Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:158-172
    DOI: 10.1016/j.renene.2020.03.185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    2. Lima, Gustavo Meirelles & Luvizotto, Edevar & Brentan, Bruno M., 2017. "Selection and location of Pumps as Turbines substituting pressure reducing valves," Renewable Energy, Elsevier, vol. 109(C), pages 392-405.
    3. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    4. Kramer, M. & Terheiden, K. & Wieprecht, S., 2018. "Pumps as turbines for efficient energy recovery in water supply networks," Renewable Energy, Elsevier, vol. 122(C), pages 17-25.
    5. Su, Xianghui & Huang, Si & Zhang, Xuejiao & Yang, Sunsheng, 2016. "Numerical research on unsteady flow rate characteristics of pump as turbine," Renewable Energy, Elsevier, vol. 94(C), pages 488-495.
    6. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.
    7. Maleki, Ali & Ghorani, Mohammad Mahdi & Haghighi, Mohammad Hadi Sotoude & Riasi, Alireza, 2020. "Numerical study on the effect of viscosity on a multistage pump running in reverse mode," Renewable Energy, Elsevier, vol. 150(C), pages 234-254.
    8. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    9. Yang, Jun & Pavesi, Giorgio & Liu, Xiaohua & Xie, Tian & Liu, Jun, 2018. "Unsteady flow characteristics regarding hump instability in the first stage of a multistage pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 377-385.
    10. Williams, A.A., 1996. "Pumps as turbines for low cost micro hydro power," Renewable Energy, Elsevier, vol. 9(1), pages 1227-1234.
    11. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    12. Arriaga, Mariano, 2010. "Pump as turbine – A pico-hydro alternative in Lao People's Democratic Republic," Renewable Energy, Elsevier, vol. 35(5), pages 1109-1115.
    13. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    14. Tao, Ran & Zhou, Xuezhi & Xu, Buchao & Wang, Zhengwei, 2019. "Numerical investigation of the flow regime and cavitation in the vanes of reversible pump-turbine during pump mode's starting up," Renewable Energy, Elsevier, vol. 141(C), pages 9-19.
    15. Tan, Xu & Engeda, Abraham, 2016. "Performance of centrifugal pumps running in reverse as turbine: Part Ⅱ- systematic specific speed and specific diameter based performance prediction," Renewable Energy, Elsevier, vol. 99(C), pages 188-197.
    16. Yang, Sun-Sheng & Derakhshan, Shahram & Kong, Fan-Yu, 2012. "Theoretical, numerical and experimental prediction of pump as turbine performance," Renewable Energy, Elsevier, vol. 48(C), pages 507-513.
    17. Pugliese, Francesco & De Paola, Francesco & Fontana, Nicola & Giugni, Maurizio & Marini, Gustavo, 2016. "Experimental characterization of two Pumps As Turbines for hydropower generation," Renewable Energy, Elsevier, vol. 99(C), pages 180-187.
    18. Choi, Hyen-Jun & Zullah, Mohammed Asid & Roh, Hyoung-Woon & Ha, Pil-Su & Oh, Sueg-Young & Lee, Young-Ho, 2013. "CFD validation of performance improvement of a 500 kW Francis turbine," Renewable Energy, Elsevier, vol. 54(C), pages 111-123.
    19. Barbarelli, S. & Amelio, M. & Florio, G., 2016. "Predictive model estimating the performances of centrifugal pumps used as turbines," Energy, Elsevier, vol. 107(C), pages 103-121.
    20. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    21. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    2. Yu, Wenjin & Zhou, Peijian & Miao, Zhouqian & Zhao, Haoru & Mou, Jiegang & Zhou, Wenqiang, 2024. "Energy performance prediction of pump as turbine (PAT) based on PIWOA-BP neural network," Renewable Energy, Elsevier, vol. 222(C).
    3. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    4. Yan, Xiaotong & Kan, Kan & Zheng, Yuan & Xu, Zhe & Rossi, Mosè & Xu, Lianchen & Chen, Huixiang, 2024. "The vortex dynamics characteristics in a pump-turbine: A rigid vorticity analysis while varying guide vane openings in turbine mode," Energy, Elsevier, vol. 289(C).
    5. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    6. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    7. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    8. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
    9. Wang, Tao & Xiang, Ru & Yu, He & Zhou, Min, 2023. "Performance improvement of forward-curved impeller with an adequate outlet swirl using in centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 204(C), pages 67-76.
    10. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    11. Lin, Tong & Zhang, Jiajing & Wei, Bisheng & Zhu, Zuchao & Li, Xiaojun, 2024. "The role of bionic tubercle leading-edge in a centrifugal pump as turbines(PATs)," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    2. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    3. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    4. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    5. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    6. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    7. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    8. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    9. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    10. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    11. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    12. Nishi, Yasuyuki & Itoh, Natsumi & Fukutomi, Junichiro, 2022. "Performance and radial thrust of single-blade reverse running pump turbine," Renewable Energy, Elsevier, vol. 201(P1), pages 499-513.
    13. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    14. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    15. Tahani, Mojtaba & Kandi, Ali & Moghimi, Mahdi & Houreh, Shahram Derakhshan, 2020. "Rotational speed variation assessment of centrifugal pump-as-turbine as an energy utilization device under water distribution network condition," Energy, Elsevier, vol. 213(C).
    16. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.
    17. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2022. "Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network," Energy, Elsevier, vol. 255(C).
    18. Diamantis Karakatsanis & Nicolaos Theodossiou, 2022. "Smart Hydropower Water Distribution Networks, Use of Artificial Intelligence Methods and Metaheuristic Algorithms to Generate Energy from Existing Water Supply Networks," Energies, MDPI, vol. 15(14), pages 1-21, July.
    19. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    20. Rossi, Mosè & Comodi, Gabriele & Piacente, Nicola & Renzi, Massimiliano, 2020. "Energy recovery in oil refineries by means of a Hydraulic Power Recovery Turbine (HPRT) handling viscous liquids," Applied Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:158-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.