IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v140y2019icp983-993.html
   My bibliography  Save this article

New mode to operate centrifugal pump as impulse turbine

Author

Listed:
  • Sengpanich, K.
  • Bohez, Erik L.J.
  • Thongkruer, P.
  • Sakulphan, K.

Abstract

Centrifugal pumps can be used as “Pump-as-Turbine (PaT)” by reversing the flow and operating as a Francis turbine. The proposed concept “Impulse Pump-as-Turbine (Impulse PaT)” will use centrifugal pump impeller to be used as hydro turbine by pairing with spear valve injector from impulse hydro turbine. Spear valve injector regulate water inlet flow rate, thus regulate power output of our new concept turbine. Additional benefit from utilized spear valve injector is low loss of turbine efficiency when operate at part-load condition, therefore this new concept turbine can be operated at wide range of flow condition without losing good efficiency while also eliminate risk of turbine damage from cavitation. Flow regulation through spear valve will also simplify control system for this proposed turbine compared to guide vanes. The validation methods from 1-D calculation based on Euler's turbine equation and numerical simulation by commercial CFD package shows that this new proposed concept is feasible with efficiency around 40% and wide operating range from 25% to maximum inlet flow rate. Results from numerical calculation shows that efficiency of this new concept of turbine is limited by number of blades in commercially available pump.

Suggested Citation

  • Sengpanich, K. & Bohez, Erik L.J. & Thongkruer, P. & Sakulphan, K., 2019. "New mode to operate centrifugal pump as impulse turbine," Renewable Energy, Elsevier, vol. 140(C), pages 983-993.
  • Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:983-993
    DOI: 10.1016/j.renene.2019.03.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119304288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    2. Williams, A.A., 1996. "Pumps as turbines for low cost micro hydro power," Renewable Energy, Elsevier, vol. 9(1), pages 1227-1234.
    3. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    4. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    5. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    6. Su, Xianghui & Huang, Si & Zhang, Xuejiao & Yang, Sunsheng, 2016. "Numerical research on unsteady flow rate characteristics of pump as turbine," Renewable Energy, Elsevier, vol. 94(C), pages 488-495.
    7. Jeon, Heungsu & Park, Joo Hoon & Shin, Youhwan & Choi, Minsuk, 2018. "Friction loss and energy recovery of a Pelton turbine for different spear positions," Renewable Energy, Elsevier, vol. 123(C), pages 273-280.
    8. Arriaga, Mariano, 2010. "Pump as turbine – A pico-hydro alternative in Lao People's Democratic Republic," Renewable Energy, Elsevier, vol. 35(5), pages 1109-1115.
    9. Zeng, Chongji & Xiao, Yexiang & Luo, Yongyao & Zhang, Jin & Wang, Zhengwei & Fan, Honggang & Ahn, Soo-Hwang, 2018. "Hydraulic performance prediction of a prototype four-nozzle Pelton turbine by entire flow path simulation," Renewable Energy, Elsevier, vol. 125(C), pages 270-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    2. Lin, Tong & Zhang, Jiajing & Wei, Bisheng & Zhu, Zuchao & Li, Xiaojun, 2024. "The role of bionic tubercle leading-edge in a centrifugal pump as turbines(PATs)," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    2. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    3. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    4. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    5. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    6. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    7. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    8. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    9. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
    10. Jadidi, P. & Zeinoddini, M., 2020. "Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder," Renewable Energy, Elsevier, vol. 152(C), pages 516-528.
    11. Menéndez, Javier & Fernández-Oro, Jesús M. & Galdo, Mónica & Loredo, Jorge, 2019. "Pumped-storage hydropower plants with underground reservoir: Influence of air pressure on the efficiency of the Francis turbine and energy production," Renewable Energy, Elsevier, vol. 143(C), pages 1427-1438.
    12. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    13. Ahmad, Shahryar Khalique & Hossain, Faisal, 2020. "Maximizing energy production from hydropower dams using short-term weather forecasts," Renewable Energy, Elsevier, vol. 146(C), pages 1560-1577.
    14. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.
    15. Alamian, Rezvan & Shafaghat, Rouzbeh & Amiri, Hoseyn A. & Shadloo, Mostafa Safdari, 2020. "Experimental assessment of a 100 W prototype horizontal axis tidal turbine by towing tank tests," Renewable Energy, Elsevier, vol. 155(C), pages 172-180.
    16. Ciric, Rade M., 2019. "Review of techno-economic and environmental aspects of building small hydro electric plants – A case study in Serbia," Renewable Energy, Elsevier, vol. 140(C), pages 715-721.
    17. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    18. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    19. Erkan, Onur & Özkan, Musa & Karakoç, T. Hikmet & Garrett, Stephen J. & Thomas, Peter J., 2020. "Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method," Renewable Energy, Elsevier, vol. 161(C), pages 1359-1367.
    20. Wang, Tao & Yu, He & Xiang, Ru & Chen, XiaoMing & Zhang, Xiang, 2023. "Performance and unsteady flow characteristic of forward-curved impeller with different blade inlet swept angles in a pump as turbine," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:140:y:2019:i:c:p:983-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.