IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp16-25.html
   My bibliography  Save this article

A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)

Author

Listed:
  • Renzi, Massimiliano
  • Nigro, Alessandra
  • Rossi, Mosè

Abstract

This work presents a model based on analytical equations to identify the Best Efficiency Point (BEP) of Pumps-as-Turbines (PaTs). The equations are developed exploiting an experimental data-set of 59 PaTs, obtained in both pump and turbine modes, in form of non-dimensional parameters. Data analysis shows a linear correlation between specific speeds in pump and turbine modes, as well as between specific diameters in both operating modes. In addition, the prediction of the PaT efficiency in turbine mode, whose evaluation is often disregarded in literature works, is presented: a second order polynomial equation to forecast the mechanical efficiency of PaTs in turbine mode is developed using the values of specific speed and mechanical efficiency in pump mode as independent variables. Performance experimental data of four PaTs, which were not used in the development of the model, are employed to validate and assess the accuracy of the proposed analytical equations. The prediction capability of the model is also compared to other four models available in literature. Results demonstrate a good forecast capability and a general better agreement with experimental data. A further improvement of the model can be achieved by extending the experimental data-set with additional PaTs typologies.

Suggested Citation

  • Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:16-25
    DOI: 10.1016/j.renene.2020.05.165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.
    2. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    3. Giosio, D.R. & Henderson, A.D. & Walker, J.M. & Brandner, P.A. & Sargison, J.E. & Gautam, P., 2015. "Design and performance evaluation of a pump-as-turbine micro-hydro test facility with incorporated inlet flow control," Renewable Energy, Elsevier, vol. 78(C), pages 1-6.
    4. Kramer, M. & Terheiden, K. & Wieprecht, S., 2018. "Pumps as turbines for efficient energy recovery in water supply networks," Renewable Energy, Elsevier, vol. 122(C), pages 17-25.
    5. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    6. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    7. Yang, Sun-Sheng & Derakhshan, Shahram & Kong, Fan-Yu, 2012. "Theoretical, numerical and experimental prediction of pump as turbine performance," Renewable Energy, Elsevier, vol. 48(C), pages 507-513.
    8. Pugliese, Francesco & De Paola, Francesco & Fontana, Nicola & Giugni, Maurizio & Marini, Gustavo, 2016. "Experimental characterization of two Pumps As Turbines for hydropower generation," Renewable Energy, Elsevier, vol. 99(C), pages 180-187.
    9. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    10. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    11. Bozorgi, A. & Javidpour, E. & Riasi, A. & Nourbakhsh, A., 2013. "Numerical and experimental study of using axial pump as turbine in Pico hydropower plants," Renewable Energy, Elsevier, vol. 53(C), pages 258-264.
    12. Yunna, Wu & Quanzhi, Chen, 2011. "The demonstration of additionality in small-scale hydropower CDM project," Renewable Energy, Elsevier, vol. 36(10), pages 2663-2666.
    13. Lydon, Tracey & Coughlan, Paul & McNabola, Aonghus, 2017. "Pressure management and energy recovery in water distribution networks: Development of design and selection methodologies using three pump-as-turbine case studies," Renewable Energy, Elsevier, vol. 114(PB), pages 1038-1050.
    14. Butera, Ilaria & Balestra, Roberto, 2015. "Estimation of the hydropower potential of irrigation networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 140-151.
    15. Barbarelli, S. & Amelio, M. & Florio, G., 2016. "Predictive model estimating the performances of centrifugal pumps used as turbines," Energy, Elsevier, vol. 107(C), pages 103-121.
    16. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    17. Rossi, Mosè & Renzi, Massimiliano, 2018. "A general methodology for performance prediction of pumps-as-turbines using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 128(PA), pages 265-274.
    18. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    19. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    20. Tan, Xu & Engeda, Abraham, 2016. "Performance of centrifugal pumps running in reverse as turbine: Part Ⅱ- systematic specific speed and specific diameter based performance prediction," Renewable Energy, Elsevier, vol. 99(C), pages 188-197.
    21. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    2. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    3. Telikani, Akbar & Rossi, Mosé & Khajehali, Naghmeh & Renzi, Massimiliano, 2023. "Pumps-as-Turbines’ (PaTs) performance prediction improvement using evolutionary artificial neural networks," Applied Energy, Elsevier, vol. 330(PA).
    4. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    5. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    6. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    7. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    8. Maio, Marco & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio & Fontana, Nicola & Marini, Gustavo, 2024. "An innovative approach for optimal selection of pumped hydro energy storage systems to foster sustainable energy integration," Renewable Energy, Elsevier, vol. 227(C).
    9. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    10. Wang, Tao & Xiang, Ru & Yu, He & Zhou, Min, 2023. "Performance improvement of forward-curved impeller with an adequate outlet swirl using in centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 204(C), pages 67-76.
    11. Kostner, Michael K. & Zanfei, Ariele & Alberizzi, Jacopo C. & Renzi, Massimiliano & Righetti, Maurizio & Menapace, Andrea, 2023. "Micro hydro power generation in water distribution networks through the optimal pumps-as-turbines sizing and control," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    2. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    3. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    4. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    5. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    6. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    7. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    8. Gabriella Balacco, 2018. "Performance Prediction of a Pump as Turbine: Sensitivity Analysis Based on Artificial Neural Networks and Evolutionary Polynomial Regression," Energies, MDPI, vol. 11(12), pages 1-17, December.
    9. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    10. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    11. Tahani, Mojtaba & Kandi, Ali & Moghimi, Mahdi & Houreh, Shahram Derakhshan, 2020. "Rotational speed variation assessment of centrifugal pump-as-turbine as an energy utilization device under water distribution network condition," Energy, Elsevier, vol. 213(C).
    12. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    13. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    14. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    15. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    16. Rossi, Mosè & Comodi, Gabriele & Piacente, Nicola & Renzi, Massimiliano, 2020. "Energy recovery in oil refineries by means of a Hydraulic Power Recovery Turbine (HPRT) handling viscous liquids," Applied Energy, Elsevier, vol. 270(C).
    17. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    18. Diamantis Karakatsanis & Nicolaos Theodossiou, 2022. "Smart Hydropower Water Distribution Networks, Use of Artificial Intelligence Methods and Metaheuristic Algorithms to Generate Energy from Existing Water Supply Networks," Energies, MDPI, vol. 15(14), pages 1-21, July.
    19. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    20. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:16-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.