IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222014530.html
   My bibliography  Save this article

Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network

Author

Listed:
  • Shojaeefard, Mohammad Hassan
  • Saremian, Salman

Abstract

Nowadays, by increasing energy consumption, micro-scale energy production has received a lot of attention worldwide. Pressure control and electricity generation using existing hydraulic energy are possible by substituting the Soft Pressure Regulation System (SPRS) for a pressure reducing valves (PRV) in urban water distribution network (WDN) pipelines. The economical benefit and short start-up time are unique features of the SPRS that uses a pump as turbine (PAT). In this study, the numerical and experimental results of a single-stage centrifugal pump in direct and reverse working modes were compared and validated. The effect of passage width increasing, adding splitter blades and simultaneous modification of these parameters on improving the hydraulic performance of the PAT in the working range are investigated. Geometric modifications do not have the same effect on hydraulic parameters and efficiency in all operating ranges due to the significant range of flow rate variations in the WDN. Therefore, the statistical analysis was performed to identify the optimum modifications based on the PAT's working time in the specified flow rate ranges. The results show that simultaneous modification of parameters in the range of part-load condition (0.8QBEP) to over-load condition (1.2QBEP) reduces losses while increasing efficiency and power generation.

Suggested Citation

  • Shojaeefard, Mohammad Hassan & Saremian, Salman, 2022. "Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014530
    DOI: 10.1016/j.energy.2022.124550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.
    2. Tahani, Mojtaba & Kandi, Ali & Moghimi, Mahdi & Houreh, Shahram Derakhshan, 2020. "Rotational speed variation assessment of centrifugal pump-as-turbine as an energy utilization device under water distribution network condition," Energy, Elsevier, vol. 213(C).
    3. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    4. Itani, Youssef & Soliman, Mohamed Reda & Kahil, Maher, 2020. "Recovering energy by hydro-turbines application in water transmission pipelines: A case study west of Saudi Arabia," Energy, Elsevier, vol. 211(C).
    5. Qi, Bing & Zhang, Desheng & Geng, Linlin & Zhao, Ruijie & van Esch, Bart P.M., 2022. "Numerical and experimental investigations on inflow loss in the energy recovery turbines with back-curved and front-curved impeller based on the entropy generation theory," Energy, Elsevier, vol. 239(PE).
    6. Nautiyal, Himanshu & Varun & Kumar, Anoop, 2010. "Reverse running pumps analytical, experimental and computational study: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2059-2067, September.
    7. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    8. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    9. Gu, Yandong & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Zhang, Fan & Wang, Peng & Appiah, Desmond & Liu, Yong, 2019. "Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method," Energy, Elsevier, vol. 170(C), pages 986-997.
    10. Yang, Sun-Sheng & Derakhshan, Shahram & Kong, Fan-Yu, 2012. "Theoretical, numerical and experimental prediction of pump as turbine performance," Renewable Energy, Elsevier, vol. 48(C), pages 507-513.
    11. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena Ramos, 2012. "Energy Production in Water Distribution Networks: A PAT Design Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3947-3959, October.
    12. Borge-Diez, David & Godoy-Déniz, Juan Manuel & López-Rey, África & Colmenar-Santos, Antonio, 2021. "Pico turbines, the solution to self-supply energy to the water supply network. A case study in Las Palmas de Gran Canaria," Energy, Elsevier, vol. 229(C).
    13. Longyan Wang & Stephen Ntiri Asomani & Jianping Yuan & Desmond Appiah, 2020. "Geometrical Optimization of Pump-As-Turbine (PAT) Impellers for Enhancing Energy Efficiency with 1-D Theory," Energies, MDPI, vol. 13(16), pages 1-30, August.
    14. Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.
    15. Jiyun, Du & Zhicheng, Shen & Hongxing, Yang, 2018. "Numerical study on the impact of runner inlet arc angle on the performance of inline cross-flow turbine used in urban water mains," Energy, Elsevier, vol. 158(C), pages 228-237.
    16. Mauro De Marchis & Barbara Milici & Roberto Volpe & Antonio Messineo, 2016. "Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis," Energies, MDPI, vol. 9(11), pages 1-15, October.
    17. Barbarelli, S. & Amelio, M. & Florio, G., 2016. "Predictive model estimating the performances of centrifugal pumps used as turbines," Energy, Elsevier, vol. 107(C), pages 103-121.
    18. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    19. Arriaga, Mariano, 2010. "Pump as turbine – A pico-hydro alternative in Lao People's Democratic Republic," Renewable Energy, Elsevier, vol. 35(5), pages 1109-1115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    2. Shen, Zhicheng & Yao, Yao & Wang, Qiliang & Lu, Lin & Yang, Hongxing, 2023. "A novel micro power generation system to efficiently harvest hydroelectric energy for power supply to water intelligent networks of urban water pipelines," Energy, Elsevier, vol. 268(C).
    3. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    4. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    5. Tong Lin & Jian Li & Baofei Xie & Jianrong Zhang & Zuchao Zhu & Hui Yang & Xiaoming Wen, 2022. "Vortex-Pressure Fluctuation Interaction in the Outlet Duct of Centrifugal Pump as Turbines (PATs)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    6. Bai, Yang & Zhu, Qianming & Huang, Diangui, 2024. "Numerical simulation of wave-number effects on the performance of traveling wave pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 229(C).
    7. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    8. Wang, Tao & Xiang, Ru & Yu, He & Zhou, Min, 2023. "Performance improvement of forward-curved impeller with an adequate outlet swirl using in centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 204(C), pages 67-76.
    9. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang & Yang, Weibin, 2023. "Comprehensive hydraulic performance improvement in a pump-turbine: An experimental investigation," Energy, Elsevier, vol. 284(C).
    10. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2024. "Analyzing the impact of blade geometrical parameters on energy recovery and efficiency of centrifugal pump as turbine installed in the pressure-reducing station," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    2. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    3. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2024. "Analyzing the impact of blade geometrical parameters on energy recovery and efficiency of centrifugal pump as turbine installed in the pressure-reducing station," Energy, Elsevier, vol. 289(C).
    4. Tahani, Mojtaba & Kandi, Ali & Moghimi, Mahdi & Houreh, Shahram Derakhshan, 2020. "Rotational speed variation assessment of centrifugal pump-as-turbine as an energy utilization device under water distribution network condition," Energy, Elsevier, vol. 213(C).
    5. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    6. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    7. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    8. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    9. Qi, Bing & Bai, Xiaobang & Li, Yibin & Wang, Xiaohui & Zhang, Xiaoze & Zhang, Desheng, 2024. "Research on the influence mechanism of internal flow characteristics on energy conversion in radial energy recovery turbines under multiple conditions," Energy, Elsevier, vol. 296(C).
    10. Nishi, Yasuyuki & Itoh, Natsumi & Fukutomi, Junichiro, 2022. "Performance and radial thrust of single-blade reverse running pump turbine," Renewable Energy, Elsevier, vol. 201(P1), pages 499-513.
    11. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    12. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    13. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    14. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    15. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    16. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    17. Pugliese, Francesco & De Paola, Francesco & Fontana, Nicola & Giugni, Maurizio & Marini, Gustavo, 2016. "Experimental characterization of two Pumps As Turbines for hydropower generation," Renewable Energy, Elsevier, vol. 99(C), pages 180-187.
    18. Manoujan, Amin Zarei & Riasi, Alireza, 2024. "Optimal selection of parallel pumps running as turbines for energy harvesting in water transmission lines considering economic parameters," Applied Energy, Elsevier, vol. 359(C).
    19. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2018. "Comparison of Different Approaches to Predict the Performance of Pumps As Turbines (PATs)," Energies, MDPI, vol. 11(4), pages 1-17, April.
    20. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.