IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v109y2017icp392-405.html
   My bibliography  Save this article

Selection and location of Pumps as Turbines substituting pressure reducing valves

Author

Listed:
  • Lima, Gustavo Meirelles
  • Luvizotto, Edevar
  • Brentan, Bruno M.

Abstract

Pressure control is a fundamental component of safe operation of water supply systems, mainly to reduce leakage, risk of disruption, and maintenance costs. System topology and topography can define high-pressure zones, and the use of Pressure Reducing Valves (PRVs) to maintain standard pressures in these zones is common. However, all energy available in the fluid is dissipated trough headloss. A turbine could be used instead of PRVs to produce electrical energy and to control pressure. The use of Pumps as Turbines (PATs) is recommended to reduce investment cost. Due to dynamic operations throughout the day, PATs operate under varying conditions of flow and head. This variation affects efficiency and headloss, which makes difficult the selection of PATs to substitute PRVs through conventional methods; therefore, this paper proposes a method for such selection. The method is based on maximization of energy produced, restricted to the system pressure limits. To solve this selection problem, the optimization technique of Particle Swarm Optimization (PSO) is used, and complete pump curves are used to simulate the PATs. In addition, this method is capable of identifying the best location on the network to install the PATs.

Suggested Citation

  • Lima, Gustavo Meirelles & Luvizotto, Edevar & Brentan, Bruno M., 2017. "Selection and location of Pumps as Turbines substituting pressure reducing valves," Renewable Energy, Elsevier, vol. 109(C), pages 392-405.
  • Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:392-405
    DOI: 10.1016/j.renene.2017.03.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117302471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irene Samora & Mário J. Franca & Anton J. Schleiss & Helena M. Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    2. Irene Samora & Mário Franca & Anton Schleiss & Helena Ramos, 2016. "Simulated Annealing in Optimization of Energy Production in a Water Supply Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1533-1547, March.
    3. L. Araujo & H. Ramos & S. Coelho, 2006. "Pressure Control for Leakage Minimisation in Water Distribution Systems Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 133-149, February.
    4. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J., 2016. "Energy management and planning in smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 273-287.
    5. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    6. Samora, Irene & Hasmatuchi, Vlad & Münch-Alligné, Cécile & Franca, Mário J. & Schleiss, Anton J. & Ramos, Helena M., 2016. "Experimental characterization of a five blade tubular propeller turbine for pipe inline installation," Renewable Energy, Elsevier, vol. 95(C), pages 356-366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Sánchez, Modesto & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Ramos, Helena M., 2018. "PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool," Renewable Energy, Elsevier, vol. 116(PA), pages 234-249.
    2. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    3. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.
    5. Oreste Fecarotta & Aonghus McNabola, 2017. "Optimal Location of Pump as Turbines (PATs) in Water Distribution Networks to Recover Energy and Reduce Leakage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5043-5059, December.
    6. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    7. Capelo, Bernardo & Pérez-Sánchez, Modesto & Fernandes, João F.P. & Ramos, Helena M. & López-Jiménez, P. Amparo & Branco, P.J. Costa, 2017. "Electrical behaviour of the pump working as turbine in off grid operation," Applied Energy, Elsevier, vol. 208(C), pages 302-311.
    8. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    9. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    10. Gideon Johannes Bonthuys & Marco van Dijk & Giovanna Cavazzini, 2021. "Optimizing the Potential Impact of Energy Recovery and Pipe Replacement on Leakage Reduction in a Medium Sized District Metered Area," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    11. Hamlehdar, Maryam & Yousefi, Hossein & Noorollahi, Younes & Mohammadi, Mohammad, 2022. "Energy recovery from water distribution networks using micro hydropower: A case study in Iran," Energy, Elsevier, vol. 252(C).
    12. Amir Hatamkhani & Ali Moridi, 2019. "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4431-4450, October.
    13. Bizhanpour, Ali & Hasanzadeh, Nima & Najafi, Amir F. & Magagnato, Franco, 2023. "Investigation of different deflector geometry and mechanism effect on the performance of an in-pipe hydro Savonius turbine," Applied Energy, Elsevier, vol. 350(C).
    14. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    15. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    16. Rasool Motahari & Yasser Saeidi Sough & Hamed Aboutorab & Morteza Saberi, 2021. "Joint optimization of maintenance and inventory policies for multi-unit systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 587-607, June.
    17. Zhang, Guangchao & Lv, Kai & Xie, Yudong & Wang, Yong & Shan, Kunshan, 2023. "Performance study of a control valve with energy harvesting based on a modified passive model," Energy, Elsevier, vol. 285(C).
    18. Khalid Abdulaziz Alnowibet & Salem Mahdi & Mahmoud El-Alem & Mohamed Abdelawwad & Ali Wagdy Mohamed, 2022. "Guided Hybrid Modified Simulated Annealing Algorithm for Solving Constrained Global Optimization Problems," Mathematics, MDPI, vol. 10(8), pages 1-25, April.
    19. Payambarpour, S. Abdolkarim & Najafi, Amir F. & Magagnato, Franco, 2020. "Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study," Renewable Energy, Elsevier, vol. 148(C), pages 44-59.
    20. Ruben Menke & Edo Abraham & Panos Parpas & Ivan Stoianov, 2016. "Exploring Optimal Pump Scheduling in Water Distribution Networks with Branch and Bound Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5333-5349, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:109:y:2017:i:c:p:392-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.