IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp99-106.html
   My bibliography  Save this article

Feasibility study of nanocrystalline cellulose as adsorbent of steryl glucosides from palm-based biodiesel

Author

Listed:
  • Widdyaningsih, Liangna
  • Setiawan, Albert
  • Santoso, Shella Permatasari
  • Soetaredjo, Felycia Edi
  • Ismadji, Suryadi
  • Hartono, Sandy Budi
  • Ju, Yi-Hsu
  • Tran-Nguyen, Phuong Lan
  • Yuliana, Maria

Abstract

Increasing the content of biodiesel in the diesel fuel mixture faces some challenges due to the presence of steryl glucosides (SG) compounds, which causes the filter clogging and the reduction of engine power. In this study, coarse filter paper-based nanocrystalline cellulose (CFP-based NCC) with the crystallinity of 85.73% is selected as a potential adsorbent to separate SG compounds in palm-based biodiesel (PO–B100). The adsorption experiments were carried out at various CFP-based NCC to PO-B100 mass ratio (1:50, 1:75, 1:100, 1:125, 1:150, 1:175, 1:200) and temperature (65, 75, 85 °C). The maximum SG removal was 91.81%, obtained at 75 °C for CFP-based NCC to PO-B100 mass ratio of 1:50. The adsorption treatment also improves the cold stability of PO-B100 by reducing the cloud point from 13.2 °C to 11.5 °C. Langmuir isotherm model is best-fitted to the equilibrium adsorption data and thermodynamic studies suggested that the adsorption of SG onto the CFP-based NCC surface is spontaneous and endothermic. The isotherm and thermodynamic study showed that the mechanism governing the adsorption process may be driven by both dipole-dipole interactions and ion exchange. The adsorption results showed that CFP-based NCC has great affinity and selectivity to SG and can be considered as a promising adsorbent of SG.

Suggested Citation

  • Widdyaningsih, Liangna & Setiawan, Albert & Santoso, Shella Permatasari & Soetaredjo, Felycia Edi & Ismadji, Suryadi & Hartono, Sandy Budi & Ju, Yi-Hsu & Tran-Nguyen, Phuong Lan & Yuliana, Maria, 2020. "Feasibility study of nanocrystalline cellulose as adsorbent of steryl glucosides from palm-based biodiesel," Renewable Energy, Elsevier, vol. 154(C), pages 99-106.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:99-106
    DOI: 10.1016/j.renene.2020.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ong, Lu Ki & Effendi, Chintya & Kurniawan, Alfin & Lin, Chun Xiang & Zhao, Xiu Song & Ismadji, Suryadi, 2013. "Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contents," Energy, Elsevier, vol. 57(C), pages 615-623.
    2. Christopher, Lew P. & Hemanathan Kumar, & Zambare, Vasudeo P., 2014. "Enzymatic biodiesel: Challenges and opportunities," Applied Energy, Elsevier, vol. 119(C), pages 497-520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreo-Martínez, Pedro & Ortiz-Martínez, Víctor Manuel & García-Martínez, Nuria & de los Ríos, Antonia Pérez & Hernández-Fernández, Francisco José & Quesada-Medina, Joaquín, 2020. "Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis," Applied Energy, Elsevier, vol. 264(C).
    2. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    3. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    4. Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
    5. Carvalho, Ana Karine F. & Bento, Heitor B.S. & Izário Filho, Hélcio J. & de Castro, Heizir F., 2018. "Approaches to convert Mucor circinelloides lipid into biodiesel by enzymatic synthesis assisted by microwave irradiations," Renewable Energy, Elsevier, vol. 125(C), pages 747-754.
    6. Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Kumar, Praveen & Srivastava, Vimal Chandra & Jha, Mithilesh Kumar, 2016. "Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 818-838.
    8. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    9. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    10. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    11. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Abdelghany, Amr & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production," Renewable Energy, Elsevier, vol. 165(P1), pages 405-419.
    12. Gutiérrez-Arnillas, Esther & Álvarez, María S. & Deive, Francisco J. & Rodríguez, Ana & Sanromán, M. Ángeles, 2016. "New horizons in the enzymatic production of biodiesel using neoteric solvents," Renewable Energy, Elsevier, vol. 98(C), pages 92-100.
    13. Xie, Wenlei & Huang, Mengyun, 2020. "Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biod," Renewable Energy, Elsevier, vol. 158(C), pages 474-486.
    14. Abrahamsson, Johanna & Andreasson, Emil & Hansson, Niklas & Sandström, David & Wennberg, Ellinor & Maréchal, Manuel & Martinelli, Anna, 2015. "A Raman spectroscopic approach to investigate the production of biodiesel from soybean oil using 1-alkyl-3-methylimidazolium ionic liquids with intermediate chain length," Applied Energy, Elsevier, vol. 154(C), pages 763-770.
    15. Vávra, Aleš & Hájek, Martin & Skopal, Frantisek, 2017. "The removal of free fatty acids from methyl ester," Renewable Energy, Elsevier, vol. 103(C), pages 695-700.
    16. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    17. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Aguieiras, Erika C.G. & de Barros, Daniele S.N. & Fernandez-Lafuente, Roberto & Freire, Denise M.G., 2019. "Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions," Renewable Energy, Elsevier, vol. 130(C), pages 574-581.
    19. Pleşu, Valentin & Subirana Puigcasas, Joan & Benet Surroca, Guillem & Bonet, Jordi & Bonet Ruiz, Alexandra E. & Tuluc, Alexandru & Llorens, Joan, 2015. "Process intensification in biodiesel production with energy reduction by pinch analysis," Energy, Elsevier, vol. 79(C), pages 273-287.
    20. Budžaki, Sandra & Miljić, Goran & Sundaram, Smitha & Tišma, Marina & Hessel, Volker, 2018. "Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors," Applied Energy, Elsevier, vol. 210(C), pages 268-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:99-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.