IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp497-507.html
   My bibliography  Save this article

Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation

Author

Listed:
  • Hosseinzadeh, Kh.
  • Moghaddam, M.A. Erfani
  • Asadi, A.
  • Mogharrebi, A.R.
  • Ganji, D.D.

Abstract

The sporadic nature of energy resources, especially renewable ones, underscores the need for reliable energy storage. Phase change materials (PCMs) are of great importance regarding saving energy, however, their low thermal conductivity lengthens the transition evolution which is the main problem of this system. So, many methods address this issue among which fins and nanoparticles, used in this study, are expected to have significant positive effects on the solidification rate and PCM response time. Various cases based on the presence of fins and nanoparticles are introduced and solved with Galerkin Finite Element Method (GFEM) and validated with authentic data for the solidification process. A novel mixture of nanoparticles MoS2−Fe3O4 called Hybrid Nano-Particles (HNP) is applied at different concentrations to the PCM to compensate for unfavorable ramifications of single-type nanoparticle. Also, the star shape triplex LHTESS with internal fins is the geometrical arrangement of storage unit. The results expose a substantial improvement by using each technique individually, while the lowest solidification rate is assigned to the combination usage of both techniques. Furthermore, the comparisons done in this work reveal the better performance of fins alone when juxtaposed with the result of HNPs alone.

Suggested Citation

  • Hosseinzadeh, Kh. & Moghaddam, M.A. Erfani & Asadi, A. & Mogharrebi, A.R. & Ganji, D.D., 2020. "Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation," Renewable Energy, Elsevier, vol. 154(C), pages 497-507.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:497-507
    DOI: 10.1016/j.renene.2020.03.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    2. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    3. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    4. Sahoo, Santosh Kumar & Das, Mihir Kumar & Rath, Prasenjit, 2016. "Application of TCE-PCM based heat sinks for cooling of electronic components: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 550-582.
    5. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    6. Wei, Gaosheng & Wang, Gang & Xu, Chao & Ju, Xing & Xing, Lijing & Du, Xiaoze & Yang, Yongping, 2018. "Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1771-1786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Laiquan & Zou, Yang & Huang, Shengyao & Wang, Xinyi & Shao, Rongyu & Xue, Xue & Rong, Yan & Zhou, Hao, 2023. "Experimental study on a pilot-scale medium-temperature latent heat storage system with various fins," Renewable Energy, Elsevier, vol. 205(C), pages 499-508.
    2. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    3. Guo, Junfei & Liu, Zhan & Yang, Bo & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube," Renewable Energy, Elsevier, vol. 183(C), pages 406-422.
    4. Huang, Xinyu & Du, Zhao & Li, Yuanji & Li, Ze & Yang, Xiaohu & Li, Ming-Jia, 2024. "Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: An experimental and numerical study," Energy, Elsevier, vol. 302(C).
    5. Mehmood, Mehwish & Hamid, Muhammad & Ashraf, Shumaila & Tian, Zhenfu, 2021. "Galerkin time discretization for transmission dynamics of HBV with non-linear saturated incidence rate," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    6. Mousa, Mohamed H. & Miljkovic, Nenad & Nawaz, Kashif, 2021. "Review of heat transfer enhancement techniques for single phase flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang & Bai, Ze, 2023. "Dynamic modelling and performance prediction of a novel direct-expansion ice thermal storage system based multichannel flat tube evaporator plus micro heat pipe arrays storage module," Renewable Energy, Elsevier, vol. 217(C).
    8. Zakir Khan & Zulfiqar Ahmad Khan, 2021. "Performance Evaluation of Coupled Thermal Enhancement through Novel Wire-Wound Fins Design and Graphene Nano-Platelets in Shell-and-Tube Latent Heat Storage System," Energies, MDPI, vol. 14(13), pages 1-21, June.
    9. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    10. Liu, Zhan & Ding, Jialu & Huang, Xinyu & Liu, Zhengguang & Yan, Xuewen & Liu, Xianglei & Yang, Xiaohu, 2024. "Analysis of a hybrid heat and underwater compressed air energy storage system used at coastal areas," Applied Energy, Elsevier, vol. 354(PA).
    11. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
    12. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    13. Sahoo, A. & Nandkeolyar, R., 2021. "Entropy generation in convective radiative flow of a Casson nanofluid in non-Darcy porous medium with Hall current and activation energy: The multiple regression model," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    14. Najafpour, Nategheh & Adibi, Omid, 2024. "Investigating the effects of nano-enhanced phase change material on melting performance of LHTES with novel perforated hybrid stair fins," Energy, Elsevier, vol. 290(C).
    15. Dai, Hui & Zhou, Shaobin & Li, Xuefang & Niu, Pingping & He, Suoying & Wang, Wenlong & Gao, Ming, 2024. "Charging and discharging performances investigation for a vertical triplex-tube heat exchanger with a tapered configuration and reverse layout," Renewable Energy, Elsevier, vol. 222(C).
    16. Syed Muhammad Ali Haider & Bagh Ali & Qiuwang Wang & Cunlu Zhao, 2022. "Rotating Flow and Heat Transfer of Single-Wall Carbon Nanotube and Multi-Wall Carbon Nanotube Hybrid Nanofluid with Base Fluid Water over a Stretching Sheet," Energies, MDPI, vol. 15(16), pages 1-13, August.
    17. Zhu, Rongsheng & Jing, Dalei, 2024. "Numerical study on the discharging performance of a latent heat thermal energy storage system with fractal tree-shaped convergent fins," Renewable Energy, Elsevier, vol. 221(C).
    18. Yao, Shouguang & Huang, Xinyu, 2021. "Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.
    5. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    7. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    8. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    9. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    10. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    11. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    13. Han, Lipeng & Xie, Shaolei & Liu, Shang & Sun, Jinhe & Jia, Yongzhong & Jing, Yan, 2017. "Effects of sodium chloride on the thermal behavior of oxalic acid dihydrate for thermal energy storage," Applied Energy, Elsevier, vol. 185(P1), pages 762-767.
    14. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    15. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    16. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    17. Xu, Huaqian & Zuo, Hongyang & Zeng, Kuo & Lu, Yongwen & Chi, Bowen & Flamant, Gilles & Yang, Haiping & Chen, Hanping, 2024. "Investigation of the modified Gaussian-based non-phase field method for numerical simulation of latent heat storage," Energy, Elsevier, vol. 288(C).
    18. Fateh Mebarek-Oudina & Ines Chabani, 2023. "Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems," Energies, MDPI, vol. 16(3), pages 1-21, January.
    19. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    20. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:497-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.