IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148124000417.html
   My bibliography  Save this article

Charging and discharging performances investigation for a vertical triplex-tube heat exchanger with a tapered configuration and reverse layout

Author

Listed:
  • Dai, Hui
  • Zhou, Shaobin
  • Li, Xuefang
  • Niu, Pingping
  • He, Suoying
  • Wang, Wenlong
  • Gao, Ming

Abstract

Given the inherent low thermal conductivity of phase change materials, the majority of previous research has focused on heat transfer intensification for the double-tube heat exchanger. However, a triplex-tube heat exchanger (TTHX) delivers a larger heat transfer area. To further elevate the heat transfer properties, a TTHX with a tapered configuration is proposed. How the tapered structure boosts heat transfer and the impact of cone angles on the charging and discharging performances of TTHX are investigated. Results demonstrate that employing the tapered structure significantly elevates the charging rate, and the charging time exhibits a trend of first declining and subsequently rising as θ increases from 3° to 8°, where the optimal cone angle (θ = 6°) shortens the charging time by 40.41% compared to θ = 0°. However, the heat transfer during solidifying is inhibited, and the inhibition becomes more pronounced as θ increases. This negative effect can be remarkably improved by imposing a reverse layout, which reduces the discharging time by a maximum of 32.54% compared to devices without reverse layout. This study offers a new perspective for the optimization research of the charging and discharging performances of TTHX and can provide guidelines for the optimization design of TTHX.

Suggested Citation

  • Dai, Hui & Zhou, Shaobin & Li, Xuefang & Niu, Pingping & He, Suoying & Wang, Wenlong & Gao, Ming, 2024. "Charging and discharging performances investigation for a vertical triplex-tube heat exchanger with a tapered configuration and reverse layout," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000417
    DOI: 10.1016/j.renene.2024.119976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124000417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.119976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Hui-Ming & Yang, Wen-Hsiung & Chou, Chao-Wu & Padilan, Marivic V., 2012. "Renewable energy supply chains, performance, application barriers, and strategies for further development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5451-5465.
    2. Hosseinzadeh, Kh. & Moghaddam, M.A. Erfani & Asadi, A. & Mogharrebi, A.R. & Ganji, D.D., 2020. "Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation," Renewable Energy, Elsevier, vol. 154(C), pages 497-507.
    3. Toshihiko Shakouchi & Kazuma Yamamura & Koichi Tsujimoto & Toshitake Ando, 2020. "Heat Transfer Enhancement of Circular- and Petal- Shaped Double-Tube-Type Heat Exchangers by Triple Ones," Energies, MDPI, vol. 13(24), pages 1-18, December.
    4. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    5. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    6. Palmer, Ben & Arshad, Adeel & Yang, Yan & Wen, Chuang, 2023. "Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations," Applied Energy, Elsevier, vol. 333(C).
    7. Mohammad Ghalambaz & Jasim M. Mahdi & Amirhossein Shafaghat & Amir Hossein Eisapour & Obai Younis & Pouyan Talebizadeh Sardari & Wahiba Yaïci, 2021. "Effect of Twisted Fin Array in a Triple-Tube Latent Heat Storage System during the Charging Mode," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    2. Saulius Pakalka & Kęstutis Valančius & Giedrė Streckienė, 2021. "Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger," Energies, MDPI, vol. 14(3), pages 1-14, January.
    3. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    4. Zhao, Zhen-yu & Tian, Yu-xi & Zillante, George, 2014. "Modeling and evaluation of the wind power industry chain: A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 397-406.
    5. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    6. Chrysa Politi & Antonis Peppas & Maria Taxiarchou, 2023. "Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    7. Balderrama Prieto, Silvino A. & Sabharwall, Piyush, 2024. "Technical and economic evaluation of heat transfer fluids for a TES system integrated to an advanced nuclear reactor," Applied Energy, Elsevier, vol. 360(C).
    8. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    9. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    10. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    12. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    13. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Antonella Biscione & Annunziata de Felice & Teodoro Gallucci, 2022. "Energy Saving in Transition Economies: Environmental Activities in Manufacturing Firms," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    15. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    16. Hossein Heirani & Naser Bagheri Moghaddam & Sina Labbafi & Seyedali Sina, 2022. "A Business Model for Developing Distributed Photovoltaic Systems in Iran," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    17. Tavakoli, Ali & Hashemi, Javad & Najafian, Mahyar & Ebrahimi, Amin, 2023. "Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins," Renewable Energy, Elsevier, vol. 217(C).
    18. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    19. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    20. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.