IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics036054422401586x.html
   My bibliography  Save this article

Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: An experimental and numerical study

Author

Listed:
  • Huang, Xinyu
  • Du, Zhao
  • Li, Yuanji
  • Li, Ze
  • Yang, Xiaohu
  • Li, Ming-Jia

Abstract

A fin-metal foam composite structure is employed in the phase change energy storage coupled Organic Rankine Cycle system to enhance thermal performance. The 3-D numerical model is validated through an experimental system to analyze the impact of metal foam parameters and fluctuating heat source parameters (amplitude and half-period) on the system's storage-release process during heat source fluctuation. According to the Taguchi method, metal foam porosity significantly influences the total storage-release time. An increase in porosity leads to a continuous increase in the total storage-release time, while an increase in PPI and a decrease in heat source amplitude initially increase and then decrease the total storage-release time. Under constant metal foam PPI (10) and porosity (0.97), Case T (half period = 60 and amplitude = 1.0) demonstrates a 2.04 % increase in average heat transfer rate and a 1.78 % reduction in total storage-release time compared to Case 0 (constant heat source). The average heat release rate sees a 4.23 % increase, while total heat storage and heat release rise by 0.96 % and 1.87 %. The research has specific technical significance for the photothermal application of phase change energy storage technology to the variability and unpredictability of solar energy.

Suggested Citation

  • Huang, Xinyu & Du, Zhao & Li, Yuanji & Li, Ze & Yang, Xiaohu & Li, Ming-Jia, 2024. "Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: An experimental and numerical study," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s036054422401586x
    DOI: 10.1016/j.energy.2024.131813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401586X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s036054422401586x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.