IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp475-487.html
   My bibliography  Save this article

Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump

Author

Listed:
  • Li, Xiaojun
  • Chen, Bo
  • Luo, Xianwu
  • Zhu, Zuchao

Abstract

An experimental investigation based on particle image velocimetry (PIV) technology was used to measure the internal flow in a low-specific-speed centrifugal pump impeller. The main purpose of this paper is to quantitatively study the influence of the internal flow patterns on the hydraulic performance and energy conversion characteristics through this visualization experiment. The PIV measuring region covers full impeller channels. Phase-averaged relative velocity distributions were calculated to investigate the evolution of internal flow pattern with the decrease in flow rate. The effect of flow pattern on pump head has also been investigated qualitatively. Results show that a clockwise vortex on the blade suction side and a counterclockwise vortex on the blade pressure side will appear in different impeller passages with the decrease in flow rate. The counterclockwise vortex moves towards the impeller outlet, but the clockwise vortex moves to the opposite side. Detailed studies show that the motion of the vortices considerably impacts pump hydraulic performance. The counterclockwise vortex will increase energy losses, whereas the clockwise vortex positively affects the pump head. Moreover, the blade loading distribution and its variation with flow rate are proposed to analyse the energy conversion mechanism in the centrifugal pump impeller.

Suggested Citation

  • Li, Xiaojun & Chen, Bo & Luo, Xianwu & Zhu, Zuchao, 2020. "Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump," Renewable Energy, Elsevier, vol. 151(C), pages 475-487.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:475-487
    DOI: 10.1016/j.renene.2019.11.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119317367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    2. Yang, Jun & Pavesi, Giorgio & Liu, Xiaohua & Xie, Tian & Liu, Jun, 2018. "Unsteady flow characteristics regarding hump instability in the first stage of a multistage pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 377-385.
    3. Zhu, Baoshan & Wang, Xuhe & Tan, Lei & Zhou, Dongyue & Zhao, Yue & Cao, Shuliang, 2015. "Optimization design of a reversible pump–turbine runner with high efficiency and stability," Renewable Energy, Elsevier, vol. 81(C), pages 366-376.
    4. Wang, Chuan & Shi, Weidong & Wang, Xikun & Jiang, Xiaoping & Yang, Yang & Li, Wei & Zhou, Ling, 2017. "Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics," Applied Energy, Elsevier, vol. 187(C), pages 10-26.
    5. Alemi Arani, Hamed & Fathi, Mohammad & Raisee, Mehrdad & Nourbakhsh, Seyed Ahmad, 2019. "The effect of tongue geometry on pump performance in reverse mode: An experimental study," Renewable Energy, Elsevier, vol. 141(C), pages 717-727.
    6. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    7. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    8. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijian Shi & Jun Zhu & Fangping Tang & Chuan Wang, 2020. "Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model," Energies, MDPI, vol. 13(4), pages 1-19, February.
    2. Li, Xiaojun & Chen, Hui & Chen, Bo & Luo, Xianwu & Yang, Baofeng & Zhu, Zuchao, 2020. "Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method," Renewable Energy, Elsevier, vol. 162(C), pages 561-574.
    3. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    4. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    5. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    6. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    7. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    8. Hongliang Wang & Bing Long & Chuan Wang & Chen Han & Linjian Li, 2020. "Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance," Energies, MDPI, vol. 13(7), pages 1-17, April.
    9. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    10. Xiaoke He & Yingchong Zhang & Chuan Wang & Congcong Zhang & Li Cheng & Kun Chen & Bo Hu, 2020. "Influence of Critical Wall Roughness on the Performance of Double-Channel Sewage Pump," Energies, MDPI, vol. 13(2), pages 1-20, January.
    11. Bin Huang & Kexin Pu & Peng Wu & Dazhuan Wu & Jianxing Leng, 2020. "Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review," Energies, MDPI, vol. 13(16), pages 1-19, August.
    12. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    13. Fan Zhang & Lufeng Zhu & Ke Chen & Weicheng Yan & Desmond Appiah & Bo Hu, 2020. "Numerical Simulation of Gas–Liquid Two-Phase Flow Characteristics of Centrifugal Pump Based on the CFD–PBM," Mathematics, MDPI, vol. 8(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran, Hongjuan & Liu, Yong & Luo, Xianwu & Shi, Tianjiao & Xu, Yongliang & Chen, Yuanlin & Wang, Dezhong, 2020. "Experimental comparison of two different positive slopes in one single pump turbine," Renewable Energy, Elsevier, vol. 154(C), pages 1218-1228.
    2. Hongyu, Guan & Wei, Jiang & Yuchuan, Wang & Hui, Tian & Ting, Li & Diyi, Chen, 2021. "Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 21-30.
    3. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    4. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    5. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    6. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    7. Wang, Tao & Xiang, Ru & Yu, He & Zhou, Min, 2023. "Performance improvement of forward-curved impeller with an adequate outlet swirl using in centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 204(C), pages 67-76.
    8. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    9. Chen, Xiaoping & Zhang, Zhiguo & Huang, Jianmin & Zhou, Xiaojie & Zhu, Zuchao, 2024. "Numerical investigation on energy change field in a centrifugal pump as turbine under different flow rates," Renewable Energy, Elsevier, vol. 230(C).
    10. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    11. Suh, Jun-Won & Kim, Seung-Jun & Kim, Jin-Hyuk & Joo, Won-Gu & Park, Jungwan & Choi, Young-Seok, 2020. "Effect of interface condition on the hydraulic characteristics of a pump-turbine at various guide vane opening conditions in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 986-1004.
    12. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    13. Miao, Senchun & Tan, Xingxing & Luo, Wen & Wang, Xiaohui & Yang, Junhu, 2024. "The mechanism of internal energy losses in double- suction centrifugal pumps under direct and reverse conditions," Energy, Elsevier, vol. 306(C).
    14. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    15. Li, Xiaojun & Chen, Hui & Chen, Bo & Luo, Xianwu & Yang, Baofeng & Zhu, Zuchao, 2020. "Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method," Renewable Energy, Elsevier, vol. 162(C), pages 561-574.
    16. Ye, Weixiang & Ikuta, Akihiro & Chen, Yining & Miyagawa, Kazuyoshi & Luo, Xianwu, 2020. "Numerical simulation on role of the rotating stall on the hump characteristic in a mixed flow pump using modified partially averaged Navier-Stokes model," Renewable Energy, Elsevier, vol. 166(C), pages 91-107.
    17. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    18. Nishi, Yasuyuki & Itoh, Natsumi & Fukutomi, Junichiro, 2022. "Performance and radial thrust of single-blade reverse running pump turbine," Renewable Energy, Elsevier, vol. 201(P1), pages 499-513.
    19. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    20. Wang, Tao & Liu, Yunqi & Dong, Yuancheng & Xiang, Ru & Bai, Yuxing, 2024. "The influence of the middle bending shape of the blade on the performance of a pump as turbine," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:475-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.