IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p779-d319121.html
   My bibliography  Save this article

Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model

Author

Listed:
  • Lijian Shi

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China)

  • Jun Zhu

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China)

  • Fangping Tang

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China)

  • Chuan Wang

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China)

Abstract

This study adopts a multi-disciplinary optimization design method based on an approximation model to improve the comprehensive performance of axial-flow pump impellers and fully consider the interaction and mutual influences of the hydraulic and structural designs. The lightweight research on axial-flow pump impellers takes the blade mass and efficiency of the design condition as the objective functions and the head, efficiency, maximum stress value, and maximum deformation value under small flow condition as constraints. In the optimization process, the head of the design condition remains unchanged or varies in a small range. Results show that the mass of a single blade was reduced from 0.947 to 0.848 kg, reaching a decrease of 10.47%, and the efficiency of the design condition increased from 93.91% to 94.49%, with an increase rate of 0.61%. Accordingly, the optimization effect was evident. In addition, the error between the approximate model results and calculation results of each response was within 0.5%, except for the maximum stress value. This outcome shows that the accuracy of the approximate model was high, and the analysis result is reliable. The results provide guidance for the optimal design of axial-flow pump impellers.

Suggested Citation

  • Lijian Shi & Jun Zhu & Fangping Tang & Chuan Wang, 2020. "Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model," Energies, MDPI, vol. 13(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:779-:d:319121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Chuan & Shi, Weidong & Wang, Xikun & Jiang, Xiaoping & Yang, Yang & Li, Wei & Zhou, Ling, 2017. "Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics," Applied Energy, Elsevier, vol. 187(C), pages 10-26.
    2. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong, 2020. "Collaborative optimization of ground source heat pump-radiant ceiling air conditioning system based on response surface method and NSGA-II," Renewable Energy, Elsevier, vol. 147(P1), pages 249-264.
    3. Xiaoke He & Yingchong Zhang & Chuan Wang & Congcong Zhang & Li Cheng & Kun Chen & Bo Hu, 2020. "Influence of Critical Wall Roughness on the Performance of Double-Channel Sewage Pump," Energies, MDPI, vol. 13(2), pages 1-20, January.
    4. Li, Xiaojun & Chen, Bo & Luo, Xianwu & Zhu, Zuchao, 2020. "Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump," Renewable Energy, Elsevier, vol. 151(C), pages 475-487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongliang Wang & Bing Long & Chuan Wang & Chen Han & Linjian Li, 2020. "Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance," Energies, MDPI, vol. 13(7), pages 1-17, April.
    2. Hongliang Wang & Zhongdong Qian & Di Zhang & Tao Wang & Chuan Wang, 2020. "Numerical Study of the Normal Impinging Water Jet at Different Impinging Height, Based on Wray–Agarwal Turbulence Model," Energies, MDPI, vol. 13(7), pages 1-15, April.
    3. Wenpeng Zhang & Fangping Tang & Lijian Shi & Qiujin Hu & Ying Zhou, 2020. "Effects of an Inlet Vortex on the Performance of an Axial-Flow Pump," Energies, MDPI, vol. 13(11), pages 1-23, June.
    4. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    5. Mu, Tong & Zhang, Rui & Xu, Hui & Zheng, Yuan & Fei, Zhaodan & Li, Jinghong, 2020. "Study on improvement of hydraulic performance and internal flow pattern of the axial flow pump by groove flow control technology," Renewable Energy, Elsevier, vol. 160(C), pages 756-769.
    6. Zhang, Di & Jiao, Weixuan & Cheng, Li & Xia, Chenzhi & Zhang, Bowen & Luo, Can & Wang, Chuan, 2021. "Experimental study on the evolution process of the roof-attached vortex of the closed sump," Renewable Energy, Elsevier, vol. 164(C), pages 1029-1038.
    7. Lijian Shi & Jun Zhu & Li Wang & Shiji Chu & Fangping Tang & Yan Jin, 2021. "Comparative Analysis of Strength and Modal Characteristics of a Full Tubular Pump and an Axial Flow Pump Impellers Based on Fluid-Structure Interaction," Energies, MDPI, vol. 14(19), pages 1-18, October.
    8. Weixuan Jiao & Di Zhang & Chuan Wang & Li Cheng & Tao Wang, 2020. "Unsteady Numerical Calculation of Oblique Submerged Jet," Energies, MDPI, vol. 13(18), pages 1-13, September.
    9. Shi, Lijian & Yuan, Yao & Jiao, Haifeng & Tang, Fangping & Cheng, Li & Yang, Fan & Jin, Yan & Zhu, Jun, 2021. "Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump," Renewable Energy, Elsevier, vol. 163(C), pages 987-1000.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongliang Wang & Bing Long & Chuan Wang & Chen Han & Linjian Li, 2020. "Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance," Energies, MDPI, vol. 13(7), pages 1-17, April.
    2. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    3. Zhang, Di & Jiao, Weixuan & Cheng, Li & Xia, Chenzhi & Zhang, Bowen & Luo, Can & Wang, Chuan, 2021. "Experimental study on the evolution process of the roof-attached vortex of the closed sump," Renewable Energy, Elsevier, vol. 164(C), pages 1029-1038.
    4. Xiaoke He & Yingchong Zhang & Chuan Wang & Congcong Zhang & Li Cheng & Kun Chen & Bo Hu, 2020. "Influence of Critical Wall Roughness on the Performance of Double-Channel Sewage Pump," Energies, MDPI, vol. 13(2), pages 1-20, January.
    5. Feng, Zongbao & Wu, Xianguo & Chen, Hongyu & Qin, Yawei & Zhang, Limao & Skibniewski, Miroslaw J., 2022. "An energy performance contracting parameter optimization method based on the response surface method: A case study of a metro in China," Energy, Elsevier, vol. 248(C).
    6. Jia Li & Xin Wang & Yue Wang & Wancheng Wang & Baibing Chen & Xiaolong Chen, 2020. "Effects of a Combination Impeller on the Flow Field and External Performance of an Aero-Fuel Centrifugal Pump," Energies, MDPI, vol. 13(4), pages 1-16, February.
    7. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    8. Federico Fontana & Massimo Masi, 2023. "A Hybrid Experimental-Numerical Method to Support the Design of Multistage Pumps," Energies, MDPI, vol. 16(12), pages 1-20, June.
    9. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    10. Weixuan Jiao & Di Zhang & Chuan Wang & Li Cheng & Tao Wang, 2020. "Unsteady Numerical Calculation of Oblique Submerged Jet," Energies, MDPI, vol. 13(18), pages 1-13, September.
    11. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    12. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    13. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    14. Torregrossa, Dario & Hansen, Joachim & Hernández-Sancho, Francesc & Cornelissen, Alex & Schutz, Georges & Leopold, Ulrich, 2017. "A data-driven methodology to support pump performance analysis and energy efficiency optimization in Waste Water Treatment Plants," Applied Energy, Elsevier, vol. 208(C), pages 1430-1440.
    15. Zhao, Zilong & Lv, Guoquan & Xu, Yanwen & Lin, Yu-Feng & Wang, Pingfeng & Wang, Xinlei, 2024. "Enhancing ground source heat pump system design optimization: A stochastic model incorporating transient geological factors and decision variables," Renewable Energy, Elsevier, vol. 225(C).
    16. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    17. Fan Zhang & Lufeng Zhu & Ke Chen & Weicheng Yan & Desmond Appiah & Bo Hu, 2020. "Numerical Simulation of Gas–Liquid Two-Phase Flow Characteristics of Centrifugal Pump Based on the CFD–PBM," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    18. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    19. Bin Huang & Kexin Pu & Peng Wu & Dazhuan Wu & Jianxing Leng, 2020. "Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review," Energies, MDPI, vol. 13(16), pages 1-19, August.
    20. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:779-:d:319121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.