IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i11p1097-d81570.html
   My bibliography  Save this article

Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey

Author

Listed:
  • Zerrin Günkaya

    (Department of Environmental Engineering, Faculty of Engineering, Anadolu University, Eskişehir 26555, Turkey)

  • Alp Özdemir

    (Department of Environmental Engineering, Faculty of Engineering, Anadolu University, Eskişehir 26555, Turkey)

  • Aysun Özkan

    (Department of Environmental Engineering, Faculty of Engineering, Anadolu University, Eskişehir 26555, Turkey)

  • Müfide Banar

    (Department of Environmental Engineering, Faculty of Engineering, Anadolu University, Eskişehir 26555, Turkey)

Abstract

The aim of this paper was to determine how to change the environmental performance of electricity generation depending on the resources and their shares, in order to support decision-makers. Additionally, this paper presents an application of life cycle assessment (LCA) methodology to determine the environmental burdens of electricity generation in Turkey. Electricity generation data in Turkey for the years 2012 and 2023 were used as a case study. The functional unit for electricity generation was 1 kWh. The LCA calculations were carried out using CML-IA (v3.00) data and the results were interpreted with respect to Monte Carlo simulation analysis (with the Monte Carlo function built in SimaPro 8.0.1 software). The results demonstrated that the fossil fuel consumption not only contributes to global warming, but it also has effects on the elemental basis of abiotic depletion due to raw material consumption for plant infrastructure. Additionally, it was observed that the increasing proportion of wind power in the electricity mix would also increase certain life cycle impacts (such as the elemental basis of abiotic depletion, human ecotoxicity, and terrestrial ecotoxicity) in Turkey’s geography compared to increasing the share of other renewable energy sources, such as hydropower, geothermal, as well as solar.

Suggested Citation

  • Zerrin Günkaya & Alp Özdemir & Aysun Özkan & Müfide Banar, 2016. "Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey," Sustainability, MDPI, vol. 8(11), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1097-:d:81570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/11/1097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/11/1097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foidart, F. & Oliver-Solá, J. & Gasol, C.M. & Gabarrell, X. & Rieradevall, J., 2010. "How important are current energy mix choices on future sustainability? Case study: Belgium and Spain--projections towards 2020-2030," Energy Policy, Elsevier, vol. 38(9), pages 5028-5037, September.
    2. Messagie, Maarten & Mertens, Jan & Oliveira, Luis & Rangaraju, Surendraprabu & Sanfelix, Javier & Coosemans, Thierry & Van Mierlo, Joeri & Macharis, Cathy, 2014. "The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment," Applied Energy, Elsevier, vol. 134(C), pages 469-476.
    3. Turconi, R. & O’Dwyer, C. & Flynn, D. & Astrup, T., 2014. "Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland," Applied Energy, Elsevier, vol. 131(C), pages 1-8.
    4. Santoyo-Castelazo, E. & Gujba, H. & Azapagic, A., 2011. "Life cycle assessment of electricity generation in Mexico," Energy, Elsevier, vol. 36(3), pages 1488-1499.
    5. Kaya, Durmus, 2006. "Renewable energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 152-163, April.
    6. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
    7. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    8. Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
    9. Turconi, Roberto & Tonini, Davide & Nielsen, Christian F.B. & Simonsen, Christian G. & Astrup, Thomas, 2014. "Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study," Applied Energy, Elsevier, vol. 132(C), pages 66-73.
    10. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    11. Garcia, Rita & Marques, Pedro & Freire, Fausto, 2014. "Life-cycle assessment of electricity in Portugal," Applied Energy, Elsevier, vol. 134(C), pages 563-572.
    12. Gujba, H. & Mulugetta, Y. & Azapagic, A., 2010. "Environmental and economic appraisal of power generation capacity expansion plan in Nigeria," Energy Policy, Elsevier, vol. 38(10), pages 5636-5652, October.
    13. Carey W. King, 2015. "Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives," Energies, MDPI, vol. 8(11), pages 1-24, November.
    14. Kannan, R. & Leong, K.C. & Osman, R. & Ho, H.K., 2007. "Life cycle energy, emissions and cost inventory of power generation technologies in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 702-715, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    2. Kainthola, Jyoti & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2020. "Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste," Renewable Energy, Elsevier, vol. 149(C), pages 1352-1359.
    3. Rafaella de Souza Henriques & Rodney Rezende Saldanha & Lineker Max Goulart Coelho, 2019. "An Air Pollutant Emission Analysis of Brazilian Electricity Production Projections and Other Countries," Energies, MDPI, vol. 12(15), pages 1-19, July.
    4. Menberg, Kathrin & Heberle, Florian & Uhrmann, Hannah & Bott, Christoph & Grünäugl, Sebastian & Brüggemann, Dieter & Bayer, Peter, 2023. "Environmental impact of cogeneration in binary geothermal plants," Renewable Energy, Elsevier, vol. 218(C).
    5. Magrassi, Fabio & Rocco, Elena & Barberis, Stefano & Gallo, Michela & Del Borghi, Adriana, 2019. "Hybrid solar power system versus photovoltaic plant: A comparative analysis through a life cycle approach," Renewable Energy, Elsevier, vol. 130(C), pages 290-304.
    6. Yilan, Gülşah & Kadirgan, M.A. Neşet & Çiftçioğlu, Gökçen A., 2020. "Analysis of electricity generation options for sustainable energy decision making: The case of Turkey," Renewable Energy, Elsevier, vol. 146(C), pages 519-529.
    7. Paula M. Wenzel & Peter Radgen, 2023. "Extending effectiveness to efficiency: Comparing energy and environmental assessment methods for a wet cooling tower," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 693-706, June.
    8. Umara Khan & Ron Zevenhoven & Tor-Martin Tveit, 2020. "Evaluation of the Environmental Sustainability of a Stirling Cycle-Based Heat Pump Using LCA," Energies, MDPI, vol. 13(17), pages 1-16, August.
    9. Vasileios Ntouros & Ioannis Kousis & Dimitra Papadaki & Anna Laura Pisello & Margarita Niki Assimakopoulos, 2021. "Life Cycle Assessment on Different Synthetic Routes of ZIF-8 Nanomaterials," Energies, MDPI, vol. 14(16), pages 1-22, August.
    10. Vega-Coloma, Mabel & Zaror, Claudio A., 2018. "Environmental impact profile of electricity generation in Chile: A baseline study over two decades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 154-167.
    11. Bayrakci Ozdingis, Asiye Gul & Kocar, Gunnur, 2018. "Current and future aspects of bioethanol production and utilization in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2196-2203.
    12. Mitja Mori & Manuel Gutiérrez & Mihael Sekavčnik & Boštjan Drobnič, 2021. "Modelling and Environmental Assessment of a Stand-Alone Micro-Grid System in a Mountain Hut Using Renewables," Energies, MDPI, vol. 15(1), pages 1-21, December.
    13. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    14. Mehmet Kadri Akyüz & Önder Altuntaş & Mehmet Ziya Söğüt, 2017. "Economic and Environmental Optimization of an Airport Terminal Building’s Wall and Roof Insulation," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    15. Parascanu, M.M. & Puig Gamero, M. & Sánchez, P. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2018. "Life cycle assessment of olive pomace valorisation through pyrolysis," Renewable Energy, Elsevier, vol. 122(C), pages 589-601.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Ramirez, Angel D. & Rivela, Beatriz & Boero, Andrea & Melendres, Ana M., 2019. "Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience," Energy Policy, Elsevier, vol. 125(C), pages 467-477.
    3. Vega-Coloma, Mabel & Zaror, Claudio A., 2018. "Environmental impact profile of electricity generation in Chile: A baseline study over two decades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 154-167.
    4. Kabayo, Jeremiah & Marques, Pedro & Garcia, Rita & Freire, Fausto, 2019. "Life-cycle sustainability assessment of key electricity generation systems in Portugal," Energy, Elsevier, vol. 176(C), pages 131-142.
    5. Łukasz Sobol & Arkadiusz Dyjakon, 2020. "The Influence of Power Sources for Charging the Batteries of Electric Cars on CO 2 Emissions during Daily Driving: A Case Study from Poland," Energies, MDPI, vol. 13(16), pages 1-19, August.
    6. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    7. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    8. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
    9. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    10. Santoyo-Castelazo, E. & Gujba, H. & Azapagic, A., 2011. "Life cycle assessment of electricity generation in Mexico," Energy, Elsevier, vol. 36(3), pages 1488-1499.
    11. Jiabin Chen & Shaobo Wen, 2020. "Implications of Energy Intensity Ratio for Carbon Dioxide Emissions in China," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    12. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    13. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    14. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    15. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    16. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    17. Kemp-Benedict, Eric, 2018. "Dematerialization, Decoupling, and Productivity Change," Ecological Economics, Elsevier, vol. 150(C), pages 204-216.
    18. Charles A. S. Hall, 2022. "The 50th Anniversary of The Limits to Growth : Does It Have Relevance for Today’s Energy Issues?," Energies, MDPI, vol. 15(14), pages 1-13, July.
    19. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    20. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1097-:d:81570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.