IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222024112.html
   My bibliography  Save this article

High-solids anaerobic co-digestion performances and microbial community dynamics in co-digestion of different mixing ratios with food waste and highland barley straw

Author

Listed:
  • Bao, Rui
  • Wei, Yufang
  • Guan, Ruolin
  • Li, Xiujin
  • Lu, Xuebin
  • Rong, Siyuan
  • Zuo, Xiaoyu
  • Yuan, Hairong

Abstract

High-solids anaerobic co-digestion (HSACoD) performances and microbial community dynamics were investigated. Food waste (FW) and highland barley straw (HBS) were used as co-digestion substrates with mixing ratios of 1:1, 1:3, 1:5, 5:1, and 3:1 (FW: HBS) in an anaerobic digestion (AD) system with 20% total solids. The results showed that the highest methane yield was 509.5 mLN/gVS for FH51, which was 129.8% higher than that of the single HBS. Synergistic effects contributed 20.4%–30.9% to improving methane yields in the first 25 days. The HSACoD system displayed excellent buffer capacity. Fastidiosipila, Gallicola, Proteiniphilum, Aminobacterium, Syntrophaceticus, and W5053 were dominant genera. Methanobacterium, Methanosphaera, Methanoculleus, and Methanosarcina were the key methanogens, displaying high relative abundance. Functional profiling indicated a relative abundance of metabolic pathways of 36.9%–39.6%, with the next most prevalent pathways being cellular processes and signaling, and information storage and processing. Therefore, HSACoD of FW and HBS can enhance AD speed in the early phase of AD and improve system stability.

Suggested Citation

  • Bao, Rui & Wei, Yufang & Guan, Ruolin & Li, Xiujin & Lu, Xuebin & Rong, Siyuan & Zuo, Xiaoyu & Yuan, Hairong, 2023. "High-solids anaerobic co-digestion performances and microbial community dynamics in co-digestion of different mixing ratios with food waste and highland barley straw," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024112
    DOI: 10.1016/j.energy.2022.125529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    2. Alves, Ingrid R.F.S. & Mahler, Claudio F. & Oliveira, Luciano B. & Reis, Marcelo M. & Bassin, João P., 2022. "Investigating the effect of crude glycerol from biodiesel industry on the anaerobic co-digestion of sewage sludge and food waste in ternary mixtures," Energy, Elsevier, vol. 241(C).
    3. Kainthola, Jyoti & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2020. "Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste," Renewable Energy, Elsevier, vol. 149(C), pages 1352-1359.
    4. Ajayi-Banji, A.A. & Sunoj, S. & Igathinathane, C. & Rahman, S., 2021. "Kinetic studies of alkaline-pretreated corn stover co-digested with upset dairy manure under solid-state," Renewable Energy, Elsevier, vol. 163(C), pages 2198-2207.
    5. Soares, L.A. & Rabelo, C.A.B.S. & Delforno, T.P. & Silva, E.L. & Varesche, M.B.A., 2019. "Experimental design and syntrophic microbial pathways for biofuel production from sugarcane bagasse under thermophilic condition," Renewable Energy, Elsevier, vol. 140(C), pages 852-861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sha, Hao & Wang, Qing & Dong, Zheng & Cao, Shengxian & Zhao, Bo & Wang, Gong & Duan, Jie, 2024. "NaOH-urea pretreatment enhanced H2 and CH4 yields via optimizing mixed alkali ratio, pretreatment time, and organic loading rate during anaerobic digestion of corn stover," Energy, Elsevier, vol. 288(C).
    2. Liu, Changyu & Sun, Yongxiang & Bian, Ji & Hu, Wanyu & Zhang, Chengjun & Wu, Yangyang & Li, Pengfei & Li, Dong, 2023. "Mechanism of solar photo-thermal transformation for baffled liquid on energy and mass transfer efficiency in direct absorption anaerobic reactor," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    2. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    3. Du, Ran & Li, Chong & Lin, Weichao & Lin, Carol Sze Ki & Yan, Jianbin, 2022. "Domesticating a bacterial consortium for efficient lignocellulosic biomass conversion," Renewable Energy, Elsevier, vol. 189(C), pages 359-368.
    4. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    5. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    6. Hosseini Koupaie, E. & Lin, L. & Bazyar Lakeh, A.A. & Azizi, A. & Dhar, B.R. & Hafez, H. & Elbeshbishy, E., 2021. "Performance evaluation and microbial community analysis of mesophilic and thermophilic sludge fermentation processes coupled with thermal hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Graciela M. L. Ruiz-Aguilar & Juan H. Martínez-Martínez & Rogelio Costilla-Salazar & Sarai Camarena-Martínez, 2023. "Using Central Composite Design to Improve Methane Production from Anaerobic Digestion of Tomato Plant Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
    8. Douglas Eldo Pereira de Oliveira & Amanda Carvalho Miranda & Milton Vieira Junior & José Carlos Curvelo Santana & Elias Basile Tambourgi & Francesco Facchini & Raffaello Iavagnilio & Luiz Fernando Rod, 2024. "Economic and Environmental Feasibility of Cogeneration from Food Waste: A Case Study in São Paulo City," Sustainability, MDPI, vol. 16(7), pages 1-17, April.
    9. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.
    10. Ajayi-Banji, A. & Rahman, S., 2022. "A review of process parameters influence in solid-state anaerobic digestion: Focus on performance stability thresholds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński & Sławomir Kasiński & Jordi Cruz Sanchez, 2024. "Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review," Energies, MDPI, vol. 17(2), pages 1-33, January.
    13. Monika Šabić Runjavec & Marija Vuković Domanovac & Ante Jukić, 2023. "Application of Industrial Wastewater and Sewage Sludge for Biohydrogen Production," Energies, MDPI, vol. 16(5), pages 1-15, March.
    14. Darmawan, Arif & Budianto, Dwika & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Retrofitting existing coal power plants through cofiring with hydrothermally treated empty fruit bunch and a novel integrated system," Applied Energy, Elsevier, vol. 204(C), pages 1138-1147.
    15. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    16. Walczak, Justyna & Karolinczak, Beata & Zubrowska-Sudol, Monika, 2023. "Effect of co-digestion and hydrodynamic disintegration on the methane potential of sewage sludge and organic fraction of municipal solid waste with consideration of the carbon footprint," Energy, Elsevier, vol. 282(C).
    17. Mao, Chunlan & Wang, Yanbo & Wang, Xiaojiao & Ren, Guangxin & Yuan, Liuyan & Feng, Yongzhong, 2019. "Correlations between microbial community and C:N:P stoichiometry during the anaerobic digestion process," Energy, Elsevier, vol. 174(C), pages 687-695.
    18. Kyle McGaughy & Ahmad Abu Hajer & Edward Drabold & David Bayless & M. Toufiq Reza, 2019. "Algal Remediation of Wastewater Produced from Hydrothermally Treated Septage," Sustainability, MDPI, vol. 11(12), pages 1-8, June.
    19. Xiaojun Liu & Arnaud Coutu & Stéphane Mottelet & André Pauss & Thierry Ribeiro, 2023. "Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches," Energies, MDPI, vol. 16(3), pages 1-31, January.
    20. Zhan, Yuanhang & Zhu, Jun & Schrader, Leland C. & Wang, Dongyi, 2023. "Modeling and optimization of bioenergy production from co-digestion of poultry litter with wheat straw in anaerobic sequencing batch reactor: Response surface methodology and artificial neural network," Applied Energy, Elsevier, vol. 345(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.