IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221013578.html
   My bibliography  Save this article

Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant

Author

Listed:
  • Boukelia, T.E.
  • Arslan, O.
  • Bouraoui, A.

Abstract

Concentrating solar power plants can be a good choice for green power generation; nevertheless, this technology has low financial profitability and energy dispatch capacities compared to those based on conventional fossil fuels. On the other side, hybridization of concentrating solar power with geothermal energy is a good option for the erection of large-scale power plants with high dispatch capacity and low investment cost, due to the large potential and geographical coincidence of geothermal resources with high solar irradiation areas. Thus, the main aim of the present paper is to investigate the hourly and annual performances of a new combined solar-geothermal power plant. This layout includes a bottoming binary geothermal power cycle that recovers the waste heat from a topping solar tower thermal power plant to generate power. In this process, both steam and organic turbines produce electrical power.

Suggested Citation

  • Boukelia, T.E. & Arslan, O. & Bouraoui, A., 2021. "Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013578
    DOI: 10.1016/j.energy.2021.121109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    2. Singh, Narendra & Kaushik, S.C. & Misra, R.D., 2000. "Exergetic analysis of a solar thermal power system," Renewable Energy, Elsevier, vol. 19(1), pages 135-143.
    3. K. Ravi Kumar & K.S. Reddy, 2012. "4-E (energy–exergy–environmental–economic) analyses of line-focusing stand-alone concentrating solar power plants," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(2), pages 82-96, January.
    4. Amadei, C.A. & Allesina, G. & Tartarini, P. & Yuting, Wu, 2013. "Simulation of GEMASOLAR-based solar tower plants for the Chinese energy market: Influence of plant downsizing and location change," Renewable Energy, Elsevier, vol. 55(C), pages 366-373.
    5. Ayub, Mohammad & Mitsos, Alexander & Ghasemi, Hadi, 2015. "Thermo-economic analysis of a hybrid solar-binary geothermal power plant," Energy, Elsevier, vol. 87(C), pages 326-335.
    6. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).
    7. McTigue, Joshua D. & Castro, Jose & Mungas, Greg & Kramer, Nick & King, John & Turchi, Craig & Zhu, Guangdong, 2018. "Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability," Applied Energy, Elsevier, vol. 228(C), pages 1837-1852.
    8. Boukelia, T.E. & Mecibah, M.S. & Kumar, B.N. & Reddy, K.S., 2015. "Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt," Energy, Elsevier, vol. 88(C), pages 292-303.
    9. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    10. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    11. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    12. Boukelia, T.E. & Arslan, O. & Mecibah, M.S., 2017. "Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach," Renewable Energy, Elsevier, vol. 105(C), pages 324-333.
    13. Heberle, Florian & Hofer, Markus & Ürlings, Nicolas & Schröder, Hartwig & Anderlohr, Thomas & Brüggemann, Dieter, 2017. "Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant," Renewable Energy, Elsevier, vol. 113(C), pages 494-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guokun & Ji, Dongxu & Qin, Yanzhou, 2023. "Geothermal-solar energy system integrated with hydrogen production and utilization modules for power supply-demand balancing," Energy, Elsevier, vol. 283(C).
    2. Zhang, Hongsheng & Hao, Ruijun & Liu, Xingang & Zhang, Ning & Guo, Wenli & Zhang, Zhenghui & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance analysis of an improved coal-fired power generation system coupled with geothermal energy based on organic Rankine cycle," Renewable Energy, Elsevier, vol. 201(P1), pages 273-290.
    3. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    4. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    5. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    6. Mahmoud, Montaser & Alkhedher, Mohammad & Ramadan, Mohamad & Naher, Sumsun & Pullen, Keith, 2022. "An investigation on organic Rankine cycle incorporating a ground-cooled condenser: Working fluid selection and regeneration," Energy, Elsevier, vol. 249(C).
    7. Ahmadi, Samareh & Gharehghani, Ayat & Soltani, Mohammad Mohsen & Fakhari, Amir Hossein, 2022. "Design and evaluation of renewable energies-based multi-generation system for hydrogen production, freshwater and cooling," Renewable Energy, Elsevier, vol. 198(C), pages 916-935.
    8. Su, Zixiang & Yang, Liu & Wang, Hao & Song, Jianzhong & Jiang, Weixue, 2024. "Exergoenvironmental optimization and thermoeconomic assessment of an innovative multistage Brayton cycle with dual expansion and cooling for ultra-high temperature solar power," Energy, Elsevier, vol. 286(C).
    9. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    2. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).
    3. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    4. Mihoub, Sofiane & Chermiti, Ali & Beltagy, Hani, 2017. "Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria," Energy, Elsevier, vol. 122(C), pages 801-810.
    5. Hu, Shuozhuo & Yang, Zhen & Li, Jian & Duan, Yuanyuan, 2022. "Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation," Renewable Energy, Elsevier, vol. 186(C), pages 628-645.
    6. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    7. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
    9. Haneklaus, Nils & Schröders, Sarah & Zheng, Yanhua & Allelein, Hans-Josef, 2017. "Economic evaluation of flameless phosphate rock calcination with concentrated solar power and high temperature reactors," Energy, Elsevier, vol. 140(P1), pages 1148-1157.
    10. Boukelia, T.E. & Mecibah, M.S. & Kumar, B.N. & Reddy, K.S., 2015. "Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt," Energy, Elsevier, vol. 88(C), pages 292-303.
    11. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    12. Zhu, Yong & Zhai, Rongrong & Qi, Jiawei & Yang, Yongping & Reyes-Belmonte, M.A. & Romero, Manuel & Yan, Qin, 2017. "Annual performance of solar tower aided coal-fired power generation system," Energy, Elsevier, vol. 119(C), pages 662-674.
    13. Rashid, Khalid & Safdarnejad, Seyed Mostafa & Ellingwood, Kevin & Powell, Kody M., 2019. "Techno-economic evaluation of different hybridization schemes for a solar thermal/gas power plant," Energy, Elsevier, vol. 181(C), pages 91-106.
    14. Boukelia, T.E. & Ghellab, A. & Laouafi, A. & Bouraoui, A. & Kabar, Y., 2020. "Cooling performances time series of CSP plants: Calculation and analysis using regression and ANN models," Renewable Energy, Elsevier, vol. 157(C), pages 809-827.
    15. Aram Mohammed Ahmed & László Kondor & Attila R. Imre, 2021. "Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-17, January.
    16. McTigue, Joshua D. & Castro, Jose & Mungas, Greg & Kramer, Nick & King, John & Turchi, Craig & Zhu, Guangdong, 2018. "Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability," Applied Energy, Elsevier, vol. 228(C), pages 1837-1852.
    17. Giglio, Andrea & Lanzini, Andrea & Leone, Pierluigi & Rodríguez García, Margarita M. & Zarza Moya, Eduardo, 2017. "Direct steam generation in parabolic-trough collectors: A review about the technology and a thermo-economic analysis of a hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 453-473.
    18. Kincaid, Nicholas & Mungas, Greg & Kramer, Nicholas & Wagner, Michael & Zhu, Guangdong, 2018. "An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver," Applied Energy, Elsevier, vol. 231(C), pages 1109-1121.
    19. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    20. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.