IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222006685.html
   My bibliography  Save this article

Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems

Author

Listed:
  • Wang, Mingtao
  • Zhang, Juan
  • Liu, Huanwei

Abstract

An efficient transcritical CO2 combined cooling, heating and power (CCHP) systems, in which the ejector refrigeration cycle is integrated with power cycle (ER-CCHP), is proposed and analyzed for recovering low-grade energy. The proposed ER-CCHP system is compared to the TR-CCHP system, in which the throttle refrigeration cycle is integrated with power cycle. To evaluate the performance of the two systems, thermodynamic models are built and the effects of turbine parameters and evaporation temperature on the performance of the systems are investigated from the aspects of energy and exergy. The results indicated that the ER- CCHP system can provide more power than the TR- CCHP system due to the introduction the ejector. Furthermore, parametric optimizations are also performed for achieving the maximum net power output. And the maximum power output and the corresponding exergy efficiencies of the ER-CCHP and TR-CCHP systems under different the heat source temperatures are calculated, respectively. It is found that under the heat source of 230 °C the ER-CCHP and TR-CCHP systems could produce the maximum net power output of 7537.5 and 7910.3 kW, respectively. However, it should be noted that the above results are obtained under design conditions, and the off-design performance is not considered.

Suggested Citation

  • Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006685
    DOI: 10.1016/j.energy.2022.123765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    2. Wang, Jiangfeng & Zhao, Pan & Niu, Xiaoqiang & Dai, Yiping, 2012. "Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy," Applied Energy, Elsevier, vol. 94(C), pages 58-64.
    3. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    4. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    5. Kwak, Dong-Hun & Binns, Michael & Kim, Jin-Kuk, 2014. "Integrated design and optimization of technologies for utilizing low grade heat in process industries," Applied Energy, Elsevier, vol. 131(C), pages 307-322.
    6. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    7. Brugger, Heike & Eichhammer, Wolfgang & Mikova, Nadezhda & Dönitz, Ewa, 2021. "Energy Efficiency Vision 2050: How will new societal trends influence future energy demand in the European countries?," Energy Policy, Elsevier, vol. 152(C).
    8. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    9. Chen, Yi-kuang & Jensen, Ida Græsted & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2021. "Impact of fossil-free decentralized heating on northern European renewable energy deployment and the power system," Energy, Elsevier, vol. 219(C).
    10. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Teng & Qing Zhang & Tao Zou & Jun Zhu & Yonggang Tu & Qian Feng, 2022. "Energy Management Strategy for Seaport Integrated Energy System under Polymorphic Network," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    2. Pourmoghadam, Peyman & Kasaeian, Alibakhsh, 2023. "Economic and energy evaluation of a solar multi-generation system powered by the parabolic trough collectors," Energy, Elsevier, vol. 262(PA).
    3. Dai, Yiru & Zeng, Yipu, 2022. "Optimization of CCHP integrated with multiple load, replenished energy, and hybrid storage in different operation modes," Energy, Elsevier, vol. 260(C).
    4. Cao, Yue & Zhan, Jun & Jia, Boqing & Chen, Ranjing & Si, Fengqi, 2023. "Optimum design of bivariate operation strategy for a supercritical/ transcritical CO2 hybrid waste heat recovery system driven by gas turbine exhaust," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhan & Liu, Zihui & Cao, Xing & Li, Hailong & Yang, Xiaohu, 2020. "Self-condensing transcritical CO2 cogeneration system with extraction turbine and ejector refrigeration cycle: A techno-economic assessment study," Energy, Elsevier, vol. 208(C).
    2. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    3. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    4. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    5. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    6. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    7. Guo, Yumin & Guo, Xinru & Wang, Jiangfeng & Li, Zhanying & Cheng, Shangfang & Wang, Shunsen, 2024. "Comprehensive analysis and optimization for a novel combined heating and power system based on self-condensing transcritical CO2 Rankine cycle driven by geothermal energy from thermodynamic, exergoeco," Energy, Elsevier, vol. 300(C).
    8. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    9. Moein Shamoushaki & Mehdi Aliehyaei & Farhad Taghizadeh-Hesary, 2021. "Energy, Exergy, Exergoeconomic, and Exergoenvironmental Assessment of Flash-Binary Geothermal Combined Cooling, Heating and Power Cycle," Energies, MDPI, vol. 14(15), pages 1-24, July.
    10. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    12. Yang, Yiping & Huang, Yulei & Jiang, Peixue & Zhu, Yinhai, 2020. "Multi-objective optimization of combined cooling, heating, and power systems with supercritical CO2 recompression Brayton cycle," Applied Energy, Elsevier, vol. 271(C).
    13. Mosaffa, A.H. & Farshi, L. Garousi, 2018. "Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications," Renewable Energy, Elsevier, vol. 120(C), pages 134-150.
    14. He, Jintao & Zhang, Yonghao & Tian, Hua & Wang, Xuan & Li, Ligeng & Cai, Jinwen & Shi, Lingfeng & Shu, Gequn, 2022. "Dynamic performance of a multi-mode operation CO2-based system combining cooling and power generation," Applied Energy, Elsevier, vol. 312(C).
    15. Fan, Gang & Li, Hang & Du, Yang & Zheng, Shaoxiong & Chen, Kang & Dai, Yiping, 2020. "Preliminary conceptual design and thermo-economic analysis of a combined cooling, heating and power system based on supercritical carbon dioxide cycle," Energy, Elsevier, vol. 203(C).
    16. Zhang, Yonghao & Shi, Lingfeng & Tian, Hua & Li, Ligeng & Wang, Xuan & Sun, Xiaocun & Shu, Gequn, 2022. "Experiment on CO2–based combined cooling and power cycle: A multi-mode operating investigation," Applied Energy, Elsevier, vol. 313(C).
    17. Zhanjie Feng & Zhenqi Hu & Xi Zhang & Yuhang Zhang & Ruihao Cui & Li Lu, 2023. "Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China," Land, MDPI, vol. 12(11), pages 1-15, October.
    18. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    19. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    20. Zell-Ziegler, Carina & Thema, Johannes & Best, Benjamin & Wiese, Frauke & Lage, Jonas & Schmidt, Annika & Toulouse, Edouard & Stagl, Sigrid, 2021. "Enough? The role of sufficiency in European energy and climate plans," Energy Policy, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.