IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8400-d426848.html
   My bibliography  Save this article

A Diverse and Sustainable Biodiesel Supply Chain Optimisation Model Based on Properties Integration

Author

Listed:
  • Chun Hsion Lim

    (Department of Chemical Engineering, University Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Malaysia)

  • Wei Xin Chua

    (Department of Chemical Engineering, University Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Malaysia)

  • Yi Wen Pang

    (Department of Chemical Engineering, University Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Malaysia)

  • Bing Shen How

    (Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching 93350, Malaysia)

  • Wendy Pei Qin Ng

    (Department of Chemical Engineering, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia)

  • Sin Yong Teng

    (Institute of Process Engineering & NETME Centre, Brno University of Technology, Technicka 2896/2, 61669 Brno, Czech Republic)

  • Wei Dong Leong

    (Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia)

  • Sue Lin Ngan

    (UKM-Graduate School of Business, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Hon Loong Lam

    (Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia)

Abstract

Producing sustainable biodiesel from oil crops has been a great challenge, especially for oil crops plantations that involve various small and medium stakeholders. Differences in plantation activities and environments create a unique sustainability profile for each oil crop that may impose more sustainability issues such as deforestation problems in oil palm plantations. This paper embraced the unique sustainability index profile of each oil crop, and an investigation was performed to evaluate the feasibility of integrating multiple oil crops into the existing biodiesel refinery to improve its economic and sustainability performances. The selection of the process feed is proposed to be based on oil crop properties such as iodine value, peroxide value and saturated and unsaturated fatty acid contents. The sustainability profiles considered in the study include deforestation, oil yield, fertiliser impact, water impact and carbon footprint. Case studies demonstrated that a more balanced sustainability index profile could be achieved at a higher production cost—from USD 6.43 billion·y −1 in a cost-saving-centric solution to USD 39.90 billion·y −1 in a sustainability-improvement-centric solution. The study provided excellent insight into the impact on production cost to achieve sustainability which can help stakeholders to evaluate the feasibility of integrating multiple oil crops in the system.

Suggested Citation

  • Chun Hsion Lim & Wei Xin Chua & Yi Wen Pang & Bing Shen How & Wendy Pei Qin Ng & Sin Yong Teng & Wei Dong Leong & Sue Lin Ngan & Hon Loong Lam, 2020. "A Diverse and Sustainable Biodiesel Supply Chain Optimisation Model Based on Properties Integration," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8400-:d:426848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emilio Font de Mora & César Torres & Antonio Valero, 2015. "Thermoeconomic Analysis of Biodiesel Production from Used Cooking Oils," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    2. Lam, Hon Loong & Ng, Wendy P.Q. & Ng, Rex T.L. & Ng, Ern Huay & Aziz, Mustafa K. Abdul & Ng, Denny K.S., 2013. "Green strategy for sustainable waste-to-energy supply chain," Energy, Elsevier, vol. 57(C), pages 4-16.
    3. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    4. Ghelichi, Zabih & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study," Energy, Elsevier, vol. 156(C), pages 661-687.
    5. Hombach, Laura Elisabeth & Büsing, Christina & Walther, Grit, 2018. "Robust and sustainable supply chains under market uncertainties and different risk attitudes – A case study of the German biodiesel market," European Journal of Operational Research, Elsevier, vol. 269(1), pages 302-312.
    6. Likozar, Blaž & Levec, Janez, 2014. "Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics ," Applied Energy, Elsevier, vol. 123(C), pages 108-120.
    7. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    8. dos Santos Alves, Camila Elisa & Belarmino, Luiz Clovis & Padula, Antonio Domingos, 2017. "Feedstock diversification for biodiesel production in Brazil: Using the Policy Analysis Matrix (PAM) to evaluate the impact of the PNPB and the economic competitiveness of alternative oilseeds," Energy Policy, Elsevier, vol. 109(C), pages 297-309.
    9. Lim, Chun Hsion & Lam, Hon Loong, 2016. "Biomass supply chain optimisation via novel Biomass Element Life Cycle Analysis (BELCA)," Applied Energy, Elsevier, vol. 161(C), pages 733-745.
    10. Janbarari, Seyed Reza & Ahmadian Behrooz, Hesam, 2020. "Optimal and robust synthesis of the biodiesel production process using waste cooking oil from different feedstocks," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabiatul Adwiyah & Yusman Syaukat & Dikky Indrawan & Heti Mulyati, 2023. "Examining Sustainable Supply Chain Management (SSCM) Performance in the Palm Oil Industry with the Triple Bottom Line Approach," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    2. Edgar Gutierrez-Franco & Andres Polo & Nicolas Clavijo-Buritica & Luis Rabelo, 2021. "Multi-Objective Optimization to Support the Design of a Sustainable Supply Chain for the Generation of Biofuels from Forest Waste," Sustainability, MDPI, vol. 13(14), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Muhammad, Gul & Alam, Md Asraful & Mofijur, M. & Jahirul, M.I. & Lv, Yongkun & Xiong, Wenlong & Ong, Hwai Chyuan & Xu, Jingliang, 2021. "Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2021. "Strategic natural gas storage coordination among EU member states in response to disruption in the trans Austria gas pipeline: A stochastic approach to solidarity," Energy, Elsevier, vol. 235(C).
    4. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    5. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    6. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    7. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    8. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    9. Mia Gotovuša & Ivan Pucko & Marko Racar & Fabio Faraguna, 2022. "Biodiesel Produced from Propanol and Longer Chain Alcohols—Synthesis and Properties," Energies, MDPI, vol. 15(14), pages 1-21, July.
    10. Sojung Kim & Junyoung Seo & Sumin Kim, 2024. "Machine Learning Technologies in the Supply Chain Management Research of Biodiesel: A Review," Energies, MDPI, vol. 17(6), pages 1-15, March.
    11. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    12. Sendzikiene, Egle & Sinkuniene, Dovile & Kazanceva, Irina & Kazancev, Kiril, 2016. "Optimization of low quality rapeseed oil transesterification with butanol by applying the response surface methodology," Renewable Energy, Elsevier, vol. 87(P1), pages 266-272.
    13. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    14. Al-Hwaiti, Mohammad S. & Alsbou, Eid M. & Al Haddad, Rawan M. & Osman, Ahmed I. & Jrai, Ahmed Abu & Al-Muhtaseb, Ala’a H. & Hasan, Ahmad O. & Morgan, Kevin & El-Sayed, El-Sayed M. & Al-Fatesh, Ahmed S, 2020. "Spatio-temporal analyses of extracted citrullus colocynthis seeds (Handal seed oil) as biofuel in internal combustion engine," Renewable Energy, Elsevier, vol. 166(C), pages 234-244.
    15. Luiz Clovis Belarmino & Antonio Domingos Padula & Margarita Navarro Pabsdorf, 2022. "Economic Sustainability in Emerging Agro-Industrial Systems: The Case of Brazilian Olive Cultivation," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    16. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    17. Ni, Zihao & Zhai, Yuling & Li, Fashe & Wang, Hua & Yang, Kai & Wang, Bican & Chen, Yu, 2020. "Reaction kinetics analysis of branched-chain alkyl esters of palmitic acid and cold flow properties," Renewable Energy, Elsevier, vol. 147(P1), pages 719-729.
    18. Peng, Valerie & Slocum, Alexander, 2020. "Endemic Water and Storm Trash to energy via in-situ processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Jason Yi Juang Yeo & Bing Shen How & Sin Yong Teng & Wei Dong Leong & Wendy Pei Qin Ng & Chun Hsion Lim & Sue Lin Ngan & Jaka Sunarso & Hon Loong Lam, 2020. "Synthesis of Sustainable Circular Economy in Palm Oil Industry Using Graph-Theoretic Method," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    20. Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8400-:d:426848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.