IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp263-273.html
   My bibliography  Save this article

Effects of carbonization on the physical properties and combustion behavior of fiberboard sanding dust pellets

Author

Listed:
  • Gao, Wenran
  • Wang, Jinchuan
  • Akhtar, Asif
  • Wei, Juntao
  • Li, Bin
  • Xu, Deliang
  • Zhang, Shu
  • Zhang, Shoujun
  • Wu, Yinlong

Abstract

In this study, sanding dust pellets were prepared using a flat-die extrusion molding machine and then carbonized at temperatures ranging from 300 to 600 °C. The density and mechanical compression resistance of pellets carbonized at 400 °C decreased by about 30% and 80%, respectively. Carbonization led to a homogeneous structure in the pellets, with a slight change in the surface area. When the carbonization temperature was increased to 600 °C, the composition and higher heating value (27,732 kJ/kg) of pellets approached the anthracite level. Additionally, 40%–80% of nitrogen in pellets could be removed through carbonization. Thermogravimetric studies indicated that the combustion end temperatures of pelletized samples were delayed at about 500 °C, compared with those of powdered samples. The only main peak of the derivative thermogravimetric analysis for carbonized pellets combustion indicated that the combustion was relatively slow and stable. Kinetic analyses revealed that the apparent activation energy (E) increased during the later combustion stages of the carbonized pellets with increasing carbonization temperature. However, pellets carbonized at 300 °C had the highest E (186,358 J mol−1) in the initial combustion stage, compared with those of other pellets (50,000 to 114,507 J mol−1).

Suggested Citation

  • Gao, Wenran & Wang, Jinchuan & Akhtar, Asif & Wei, Juntao & Li, Bin & Xu, Deliang & Zhang, Shu & Zhang, Shoujun & Wu, Yinlong, 2023. "Effects of carbonization on the physical properties and combustion behavior of fiberboard sanding dust pellets," Renewable Energy, Elsevier, vol. 212(C), pages 263-273.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:263-273
    DOI: 10.1016/j.renene.2023.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123006651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayaraman, Kandasamy & Kok, Mustafa Versan & Gokalp, Iskender, 2017. "Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends," Renewable Energy, Elsevier, vol. 101(C), pages 293-300.
    2. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    3. Ma, Peiyong & Yang, Jing & Xing, Xianjun & Weihrich, Sebastian & Fan, Fangyu & Zhang, Xianwen, 2017. "Isoconversional kinetics and characteristics of combustion on hydrothermally treated biomass," Renewable Energy, Elsevier, vol. 114(PB), pages 1069-1076.
    4. Shen, Yafei & Zhou, Yuewei & Fu, Yuhong & Zhang, Niyu, 2020. "Activated carbons synthesized from unaltered and pelletized biomass wastes for bio-tar adsorption in different phases," Renewable Energy, Elsevier, vol. 146(C), pages 1700-1709.
    5. Mian, Inamullah & Li, Xian & Dacres, Omar D. & Wang, Jianjiang & Wei, Bo & Jian, Yiming & Zhong, Mei & Liu, Jingmei & Ma, Fengyun & Rahman, Noor, 2020. "Combustion kinetics and mechanism of biomass pellet," Energy, Elsevier, vol. 205(C).
    6. da Silva, Sandra Bezerra & Arantes, Marina Donária Chaves & de Andrade, Jaily Kerller Batista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & Protásio, Thiago de Paula, 2020. "Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil," Renewable Energy, Elsevier, vol. 147(P1), pages 1870-1879.
    7. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    8. Zhou, Chunguang & Zhang, Qinglin & Arnold, Leonie & Yang, Weihong & Blasiak, Wlodzimierz, 2013. "A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels," Applied Energy, Elsevier, vol. 107(C), pages 173-182.
    9. liu, Zhijia & Jiang, Zehui & Cai, Zhiyong & Fei, Benhua & YanYu, & Liu, Xing'e, 2013. "Effects of carbonization conditions on properties of bamboo pellets," Renewable Energy, Elsevier, vol. 51(C), pages 1-6.
    10. Gani, Asri & Naruse, Ichiro, 2007. "Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass," Renewable Energy, Elsevier, vol. 32(4), pages 649-661.
    11. Jiang, Lu & Xue, Bing & Ma, Zhixiao & Yu, Lu & Huang, Beijia & Chen, Xingpeng, 2020. "A life-cycle based co-benefits analysis of biomass pellet production in China," Renewable Energy, Elsevier, vol. 154(C), pages 445-452.
    12. Girods, P. & Rogaume, Y. & Dufour, A. & Rogaume, C. & Zoulalian, A., 2008. "Low-temperature pyrolysis of wood waste containing urea–formaldehyde resin," Renewable Energy, Elsevier, vol. 33(4), pages 648-654.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    2. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    3. Yuan, Shengnan & Tan, Zhongxin & Huang, Qiaoyun, 2018. "Migration and transformation mechanism of nitrogen in the biomass–biochar–plant transport process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 1-13.
    4. Ming, Zi-Qiang & Liu, Yun-Quan & Ye, Yue-Yuan & Li, Shui-Rong & Zhao, Ying-Ru & Wang, Duo, 2016. "Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust," Energy, Elsevier, vol. 116(P1), pages 558-566.
    5. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    6. Weng, Jun-Jie & Tian, Zhen-Yu & Liu, Yue-Xi & Pan, Yang & Zhu, Ya-Nan, 2020. "Investigation on the co-combustion mechanism of coal and biomass on a fixed-bed reactor with advanced mass spectrometry," Renewable Energy, Elsevier, vol. 149(C), pages 1068-1076.
    7. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    8. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    9. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    10. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    11. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    12. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    13. Rania Almusafir & Joseph D. Smith, 2024. "Thermal Decomposition and Kinetic Parameters of Three Biomass Feedstocks for the Performance of the Gasification Process Using a Thermogravimetric Analyzer," Energies, MDPI, vol. 17(2), pages 1-15, January.
    14. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    15. Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
    16. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    17. Adnan, Muflih A. & Hossain, Mohammad M., 2018. "Gasification of various biomasses including microalgae using CO2 – A thermodynamic study," Renewable Energy, Elsevier, vol. 119(C), pages 598-607.
    18. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    19. Ni, Guanhua & Dou, Haoran & Li, Zhao & Zhu, Chuanjie & Sun, Gongshuai & Hu, Xiangming & Wang, Gang & Liu, Yixin & Wang, Zhenyang, 2022. "Study on the combustion characteristics of bituminous coal modified by typical inorganic acids," Energy, Elsevier, vol. 261(PA).
    20. Marta Bottero & Federico Dell’Anna & Vito Morgese, 2021. "Evaluating the Transition Towards Post-Carbon Cities: A Literature Review," Sustainability, MDPI, vol. 13(2), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:263-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.