IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp212-219.html
   My bibliography  Save this article

Coupling satellite images with surface measurements of bright sunshine hours to estimate daily solar irradiation on horizontal surface

Author

Listed:
  • Rusen, Selmin Ener
  • Hammer, Annette
  • Akinoglu, Bulent G.

Abstract

Satellite images are heavily used for the estimation of solar irradiation at the Earth's surface. The accuracy yet should be improved to attain more reliable input values for the use of all types of solar energy systems. This paper presents two new alternative approaches to increase the estimation accuracy of daily solar irradiation by coupling the satellite images with surface bright sunshine hour measurements. Two different approaches are described for the estimation of global solar irradiation on daily base, by using the data for some locations in Turkey and Germany. These approaches are compared with the estimation of a satellite model (HELIOSAT), Angstrom models and ground measured daily global solar irradiation by using regressions and error analyses. For nine out of ten stations the relative RMSE values of the proposed models slightly decrease in the range of only 2% in comparison with the direct satellite model for the daily global solar irradiation. The results obtained for the new approaches did not considerably improve the performance of the satellite model. However, it is possible to recommend new coupled approaches to estimate daily global solar irradiation because of their simpler calculation procedure. The results are encouraging for the future works to use long and short-term satellite image data together with the surface measured data to estimate the solar irradiation values.

Suggested Citation

  • Rusen, Selmin Ener & Hammer, Annette & Akinoglu, Bulent G., 2013. "Coupling satellite images with surface measurements of bright sunshine hours to estimate daily solar irradiation on horizontal surface," Renewable Energy, Elsevier, vol. 55(C), pages 212-219.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:212-219
    DOI: 10.1016/j.renene.2012.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112007859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akinoǧlu, B.G., 1991. "A review of sunshine-based models used to estimate monthly average global solar radiation," Renewable Energy, Elsevier, vol. 1(3), pages 479-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yıldırım, H. Başak & Teke, Ahmet & Antonanzas-Torres, Fernando, 2018. "Evaluation of classical parametric models for estimating solar radiation in the Eastern Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2053-2065.
    2. Liu, Hongda & Li, Lun & Han, Yang & Lu, Fang, 2019. "Method of identifying the lengths of equivalent clear-sky periods in the time series of DNI measurements based on generalized atmospheric turbidity," Renewable Energy, Elsevier, vol. 136(C), pages 179-192.
    3. Yao, Wanxiang & Zhang, Chunxiao & Hao, Haodong & Wang, Xiao & Li, Xianli, 2018. "A support vector machine approach to estimate global solar radiation with the influence of fog and haze," Renewable Energy, Elsevier, vol. 128(PA), pages 155-162.
    4. Liu, Yujun & Yao, Ling & Jiang, Hou & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2022. "Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data," Renewable Energy, Elsevier, vol. 189(C), pages 1249-1258.
    5. Paulescu, Marius & Paulescu, Eugenia, 2019. "Short-term forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 143(C), pages 985-994.
    6. Gao, Xiu-Yan & Huang, Chun-Lin & Zhang, Zhen-Huan & Chen, Qi-Xiang & Zheng, Yu & Fu, Di-Song & Yuan, Yuan, 2024. "Global horizontal irradiance prediction model for multi-site fusion under different aerosol types," Renewable Energy, Elsevier, vol. 227(C).
    7. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Zhou, Xiyin, 2022. "Effect of the temperature difference between land and lake on photovoltaic power generation," Renewable Energy, Elsevier, vol. 185(C), pages 86-95.
    8. Starke, Allan R. & Lemos, Leonardo F.L. & Barni, Cristian M. & Machado, Rubinei D. & Cardemil, José M. & Boland, John & Colle, Sergio, 2021. "Assessing one-minute diffuse fraction models based on worldwide climate features," Renewable Energy, Elsevier, vol. 177(C), pages 700-714.
    9. Ener Rusen, Selmin & Hammer, Annette & Akinoglu, Bulent G., 2013. "Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery," Energy, Elsevier, vol. 58(C), pages 417-425.
    10. Boukelia, T.E. & Ghellab, A. & Laouafi, A. & Bouraoui, A. & Kabar, Y., 2020. "Cooling performances time series of CSP plants: Calculation and analysis using regression and ANN models," Renewable Energy, Elsevier, vol. 157(C), pages 809-827.
    11. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Debmalya & Shastri, Babita & Imamuddin, Md. & Mukhopadhyay, K. & Rao, K.U. Bhasker, 2011. "Nanostructured carbon and polymer materials – Synthesis and their application in energy conversion devices," Renewable Energy, Elsevier, vol. 36(3), pages 1014-1018.
    2. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    3. Korachagaon, Iranna & Bapat, V.N., 2012. "General formula for the estimation of global solar radiation on earth’s surface around the globe," Renewable Energy, Elsevier, vol. 41(C), pages 394-400.
    4. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong, 2010. "Estimating daily global solar radiation by day of year in China," Applied Energy, Elsevier, vol. 87(10), pages 3011-3017, October.
    5. Ener Rusen, Selmin & Hammer, Annette & Akinoglu, Bulent G., 2013. "Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery," Energy, Elsevier, vol. 58(C), pages 417-425.
    6. Hussain, M. & Rahman, Lutfor & Rahman, Md Mohibur, 1999. "Technical note," Renewable Energy, Elsevier, vol. 18(2), pages 263-275.
    7. Li, Huashan & Lian, Yongwang & Wang, Xianlong & Ma, Weibin & Zhao, Liang, 2011. "Solar constant values for estimating solar radiation," Energy, Elsevier, vol. 36(3), pages 1785-1789.
    8. Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:212-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.