Biodiesel production from Momordica Charantia (L.): Extraction and engine characteristics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116198
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yatish, K.V. & Lalithamba, H.S. & Suresh, R. & Harsha Hebbar, H.R., 2018. "Optimization of bauhinia variegata biodiesel production and its performance, combustion and emission study on diesel engine," Renewable Energy, Elsevier, vol. 122(C), pages 561-575.
- Perumal, Varatharaju & Ilangkumaran, M., 2017. "Experimental analysis of engine performance, combustion and emission using pongamia biodiesel as fuel in CI engine," Energy, Elsevier, vol. 129(C), pages 228-236.
- Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
- Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
- Devaraj, J. & Robinson, Y. & Ganapathi, P., 2015. "Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine," Energy, Elsevier, vol. 85(C), pages 304-309.
- Daho, Tizane & Vaitilingom, Gilles & Ouiminga, Salifou K. & Piriou, Bruno & Zongo, Augustin S. & Ouoba, Samuel & Koulidiati, Jean, 2013. "Influence of engine load and fuel droplet size on performance of a CI engine fueled with cottonseed oil and its blends with diesel fuel," Applied Energy, Elsevier, vol. 111(C), pages 1046-1053.
- Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Ahmad Zauzi, Nur Syuhada, 2017. "Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO," Renewable Energy, Elsevier, vol. 114(PB), pages 437-447.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yatish, K.V. & Omkaresh, B.R. & Kattimani, Veeranna R. & Lalithamba, H.S. & Sakar, M. & Balakrishna, R. Geetha, 2023. "Solar energy-assisted reactor for the sustainable biodiesel production from Butea monosperma oil: Optimization, kinetic, thermodynamic and assessment studies," Energy, Elsevier, vol. 263(PB).
- Rajesh, K. & Natarajan, M.P. & Devan, P.K. & Ponnuvel, S., 2021. "Coconut fatty acid distillate as novel feedstock for biodiesel production and its characterization as a fuel for diesel engine," Renewable Energy, Elsevier, vol. 164(C), pages 1424-1435.
- Ağbulut, Ümit & Gürel, Ali Etem & Sarıdemir, Suat, 2021. "Experimental investigation and prediction of performance and emission responses of a CI engine fuelled with different metal-oxide based nanoparticles–diesel blends using different machine learning alg," Energy, Elsevier, vol. 215(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
- Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
- Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
- Yatish, K.V. & Omkaresh, B.R. & Kattimani, Veeranna R. & Lalithamba, H.S. & Sakar, M. & Balakrishna, R. Geetha, 2023. "Solar energy-assisted reactor for the sustainable biodiesel production from Butea monosperma oil: Optimization, kinetic, thermodynamic and assessment studies," Energy, Elsevier, vol. 263(PB).
- Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
- Singh, Yashvir & Sharma, Abhishek & Tiwari, Sumit & Singla, Amneesh, 2019. "Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach," Energy, Elsevier, vol. 168(C), pages 909-918.
- Ä°smet Sezer, 2020. "A review study on using diethyl ether in diesel engines: Effects on fuel properties, injection, and combustion characteristics," Energy & Environment, , vol. 31(2), pages 179-214, March.
- Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
- Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
- Perumal, Varatharaju & Ilangkumaran, M., 2018. "Water emulsified hybrid pongamia biodiesel as a modified fuel for the experimental analysis of performance, combustion and emission characteristics of a direct injection diesel engine," Renewable Energy, Elsevier, vol. 121(C), pages 623-631.
- Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
- Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
- Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
- Ashok, B. & Usman, Kaisan Muhammad & Vignesh, R. & Umar, U.A., 2022. "Model-based injector control map development to improve CRDi engine performance and emissions for eucalyptus biofuel," Energy, Elsevier, vol. 246(C).
- Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
- Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
- Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
- Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
- Sannagoudar Basanagoudar, Arun & Maleki, Basir & Prakash Ravikumar, Mithun & Mounesh, & Kuppe, Pramoda & Kalanakoppal Venkatesh, Yatish, 2024. "Exploitation of Annona reticulata leaf extract for the synthesis of CeO2 nanoparticles as catalyst for the production of biodiesel using seed oil thereof," Energy, Elsevier, vol. 298(C).
- Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
More about this item
Keywords
Momordica charantia (L.); Heterogeneous catalyst; Biodiesel; Transesterification; Emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318936. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.