IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v204y2020ics0360544220310422.html
   My bibliography  Save this article

Power management for storage mechanisms including battery, supercapacitor, and hydrogen of autonomous hybrid green power system utilizing multiple optimally-designed fuzzy logic controllers

Author

Listed:
  • Zahedi, R.
  • Ardehali, M.M.

Abstract

For proper power management of autonomous hybrid green power systems (HGPS), the fluctuating nature of renewable energy sources necessitates considerations for control system and integration of storage mechanisms with short-term and long-term operational characteristics. Further, operational and maintenance costs as well as reliability of HGPS to meet time varying load must be accounted for in the design process of controllers. The goal of this study is to develop multiple optimally-designed fuzzy logic controllers (FLCs) for power management of storage mechanisms including battery stack (BT), supercapacitor (SC), and hydrogen tank based on minimum operational cost and acceptable level of reliability for simulation modeling and operational performance analyses of an autonomous HGPS consisting of wind turbines, photovoltaic collectors, and fuel cell, based on actual load data. It is found that the optimization of rule bases as well as membership functions of multiple FLCs results in lower current fluctuations for BT and SC, while operation and maintenance costs and loss of power supply probability values are significantly reduced. The results confirm the importance of utilizing SC in addition to the BT and hydrogen tank, as the power density of SC provides for substantial peak power reduction during autonomous HGPS operation. It is determined that the design optimization of multiple FLCs for power management of storage mechanisms achieves an increase in hydrogen storage level to 98% at the end of one week operation, a reduction of 56% in the average current for BT stack, and participation rate of 23.63% for SC during highest hourly load peak.

Suggested Citation

  • Zahedi, R. & Ardehali, M.M., 2020. "Power management for storage mechanisms including battery, supercapacitor, and hydrogen of autonomous hybrid green power system utilizing multiple optimally-designed fuzzy logic controllers," Energy, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310422
    DOI: 10.1016/j.energy.2020.117935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    2. Athari, M.H. & Ardehali, M.M., 2016. "Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller," Renewable Energy, Elsevier, vol. 85(C), pages 890-902.
    3. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    4. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    5. Akbar Maleki, 2018. "Modeling and optimum design of an off-grid PV/WT/FC/diesel hybrid system considering different fuel prices," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(2), pages 140-147.
    6. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    7. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    8. Herrera, Victor & Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Villarreal, Igor & Camblong, Haritza, 2016. "Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway," Applied Energy, Elsevier, vol. 169(C), pages 831-845.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Wei & Wang, Hewu & Lu, Languang & Han, Xuebing & Sun, Kai & Ouyang, Minggao, 2021. "An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids," Energy, Elsevier, vol. 233(C).
    2. Chuan Xiang & Qi Cheng & Yizheng Zhu & Hongge Zhao, 2023. "Sliding Mode Control of Ship DC Microgrid Based on an Improved Reaching Law," Energies, MDPI, vol. 16(3), pages 1-14, January.
    3. Djamila Rekioua, 2023. "Energy Storage Systems for Photovoltaic and Wind Systems: A Review," Energies, MDPI, vol. 16(9), pages 1-26, May.
    4. Zhao, Chengxuan & Yang, Xiao & Yu, Jie & Yang, Minghan & Wang, Jianye & Chen, Shuai, 2023. "Interval type-2 fuzzy logic control for a space nuclear reactor core power system," Energy, Elsevier, vol. 280(C).
    5. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    7. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
    8. Zehra, Syeda Shafia & Ur Rahman, Aqeel & Ahmad, Iftikhar, 2022. "Fuzzy-barrier sliding mode control of electric-hydrogen hybrid energy storage system in DC microgrid: Modelling, management and experimental investigation," Energy, Elsevier, vol. 239(PD).
    9. Kijo-Kleczkowska, Agnieszka & Gnatowski, Adam & Krzywanski, Jaroslaw & Gajek, Marcin & Szumera, Magdalena & Tora, Barbara & Kogut, Krzysztof & Knaś, Krzysztof, 2024. "Experimental research and prediction of heat generation during plastics, coal and biomass waste combustion using thermal analysis methods," Energy, Elsevier, vol. 290(C).
    10. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2020. "Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage," Energy, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    2. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    3. Scheubel, Christopher & Zipperle, Thomas & Tzscheutschler, Peter, 2017. "Modeling of industrial-scale hybrid renewable energy systems (HRES) – The profitability of decentralized supply for industry," Renewable Energy, Elsevier, vol. 108(C), pages 52-63.
    4. Navratil, J. & Picha, K. & Buchecker, M. & Martinat, S. & Svec, R. & Brezinova, M. & Knotek, J., 2019. "Visitors’ preferences of renewable energy options in “green” hotels," Renewable Energy, Elsevier, vol. 138(C), pages 1065-1077.
    5. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    7. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    10. Zhu, Jianyun & Chen, Li & Wang, Bin & Xia, Lijuan, 2018. "Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel," Applied Energy, Elsevier, vol. 226(C), pages 423-436.
    11. Lorestani, A. & Ardehali, M.M., 2018. "Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm," Renewable Energy, Elsevier, vol. 119(C), pages 490-503.
    12. Zhang, Debao & Liu, Junwei & Jiao, Shifei & Tian, Hao & Lou, Chengzhi & Zhou, Zhihua & Zhang, Ji & Wang, Chendong & Zuo, Jian, 2019. "Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II," Energy, Elsevier, vol. 189(C).
    13. Lorestani, Alireza & Gharehpetian, G.B. & Nazari, Mohammad Hassan, 2019. "Optimal sizing and techno-economic analysis of energy- and cost-efficient standalone multi-carrier microgrid," Energy, Elsevier, vol. 178(C), pages 751-764.
    14. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    15. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    16. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    17. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    18. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    19. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    20. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.