IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp303-315.html
   My bibliography  Save this article

Low NOX - LPG staged combustion double swirl flames

Author

Listed:
  • Elbaz, A.M.
  • Moneib, H.A.
  • Shebil, K.M.
  • Roberts, W.L.

Abstract

As a clean, abundant energy source with demonstrated methodologies for producing liquid petroleum gas (LPG) from renewable feedstocks, the growing availability of LPG motivates this study to investigate the utilization of LPG in a staged swirl burner. The burner has an outer and annular swirlers concentric with a central jet, where the flame stability, NO emissions, and flame structure were investigated. The burner allows controlling the degree of mixing by varying swirl angles (θan, θout), and the equivalence ratios of the annular/outer streams (Φan/Φout). The stability mapping showed that the LPG admitted via the annular mixture improves the flame stability more than the outer mixture, and the central fuel injection further improves the flame’s stability. Less segregation between Φan and Φout leads to low NO emissions. Three distinct zones have featured the flame; the recirculation zone (RZ), the reaction zone; and the outer flame zone. High NO concentration was limited to the RZ, so the RZ residence time, mixture strength and temperature at the RZ boundaries are the controlling parameters for NO emissions. The largest θan together with a small θout has a significant effect on reducing the flame temperature and residence time, and thus produces low NO emissions.

Suggested Citation

  • Elbaz, A.M. & Moneib, H.A. & Shebil, K.M. & Roberts, W.L., 2019. "Low NOX - LPG staged combustion double swirl flames," Renewable Energy, Elsevier, vol. 138(C), pages 303-315.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:303-315
    DOI: 10.1016/j.renene.2019.01.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsumura, Toshikazu & Okazaki, Hirofumi & Dernjatin, Pauli & Savolainen, Kati, 2003. "Reducing the minimum load and NOx emissions for lignite-fired boiler by applying a stable-flame concept," Applied Energy, Elsevier, vol. 74(3-4), pages 415-424, March.
    2. Ramadhas, A.S & Jayaraj, S & Muraleedharan, C, 2004. "Use of vegetable oils as I.C. engine fuels—A review," Renewable Energy, Elsevier, vol. 29(5), pages 727-742.
    3. Raslavičius, Laurencas & Keršys, Artūras & Mockus, Saulius & Keršienė, Neringa & Starevičius, Martynas, 2014. "Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 513-525.
    4. Selim, Mohamed Y.E. & Radwan, M.S. & Saleh, H.E., 2008. "Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds," Renewable Energy, Elsevier, vol. 33(6), pages 1173-1185.
    5. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Shuai & Gong, Yan & Duan, Zhengqiao & Guo, Qinghua & Yu, Guangsuo, 2023. "Investigation of the correlation between OH*, CH* chemiluminescence and heat release rate in methane inverse diffusion flame," Energy, Elsevier, vol. 283(C).
    2. Abay Mukhamediyarovich Dostiyarov & Dias Raybekovich Umyshev & Andrey Anatolievich Kibarin & Ayaulym Konusbekovna Yamanbekova & Musagul Elekenovich Tumanov & Gulzira Ainadinovna Koldassova & Maxat Arg, 2024. "Experimental Investigation of Non-Premixed Combustion Process in a Swirl Burner with LPG and Hydrogen Mixture," Energies, MDPI, vol. 17(5), pages 1-14, February.
    3. Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
    4. Cai, Tao & Zhao, Dan & Sun, Yuze & Ni, Siliang & Li, Weixuan & Guan, Di & Wang, Bing, 2021. "Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    4. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    5. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    6. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    7. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    8. Yang, W.M. & An, H. & Li, J. & Duan, L., 2015. "Impact of methane addition on the performance of biodiesel fueled diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 784-792.
    9. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    10. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    11. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Shi, Weibo & Li, Zihang & Zhao, Zhe & Yu, Xiumin & Sun, Ping & Sang, Tao & Dong, Wei & Li, Ming, 2024. "A renewable clean energy application: Oxyhydrogen negative pressure inhalation for enhancing the combustion and emission characteristics of isopropanol/gasoline dual-fuel combined injection engine," Energy, Elsevier, vol. 290(C).
    13. Ogunlowo, Olufemi O. & Bristow, Abigail L. & Sohail, M., 2017. "A stakeholder analysis of the automotive industry's use of compressed natural gas in Nigeria," Transport Policy, Elsevier, vol. 53(C), pages 58-69.
    14. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    15. Georgakellos, Dimitrios A., 2010. "Impact of a possible environmental externalities internalisation on energy prices: The case of the greenhouse gases from the Greek electricity sector," Energy Economics, Elsevier, vol. 32(1), pages 202-209, January.
    16. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    17. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    18. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Dimitrios Tziourtzioumis, 2023. "Cycle-to-Cycle Variation of the Combustion Process in a Diesel Engine Fueled with Rapeseed Oil—Diethyl Ether Blends," Energies, MDPI, vol. 16(2), pages 1-17, January.
    19. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    20. Al Omari, Salah A.B. & Hamdan, Mohammad O. & Selim, Mohamed YE. & Elnajjar, Emad, 2019. "Combustion of jojoba-oil/diesel blends in a small scale furnace," Renewable Energy, Elsevier, vol. 131(C), pages 678-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:303-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.