IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v74y2003i3-4p415-424.html
   My bibliography  Save this article

Reducing the minimum load and NOx emissions for lignite-fired boiler by applying a stable-flame concept

Author

Listed:
  • Tsumura, Toshikazu
  • Okazaki, Hirofumi
  • Dernjatin, Pauli
  • Savolainen, Kati

Abstract

For the purpose of improving the load range and NOx emission level of lignite-fired power plants, a new combustion technology, called NR-LE burners (NOx Reduction-Load Extension), has been developed in co-operation between Babcock-Hitachi and Fortum. A single-burner combustion test was performed in Japan with this new NR-LE type burner using Czech lignite. Adapting the flame-stabilization ring and a special additional air-nozzle resulted in achieving a stable flame, which enables: - The burner minimum load to be less than 50% (Boiler load: 30-40%) - Low NOx emissions of less than 200 mg/m3 (6% O2, dry base) The first commercial full-scale application of the NR-LE burner was by the IPP power producer in the Czech Republic (Sokolovská Uhelná, a.s. at Vresová Unit2 boiler with steam parameters 325 t/h, 535 °C, 13.5 MPa). The commissioning test runs of the new burners were carried out during September to October 2001. The boiler is now in commercial operation, with (i) a 30% minimum load without supplementary fuel, and (ii) lower NOx emission levels.

Suggested Citation

  • Tsumura, Toshikazu & Okazaki, Hirofumi & Dernjatin, Pauli & Savolainen, Kati, 2003. "Reducing the minimum load and NOx emissions for lignite-fired boiler by applying a stable-flame concept," Applied Energy, Elsevier, vol. 74(3-4), pages 415-424, March.
  • Handle: RePEc:eee:appene:v:74:y:2003:i:3-4:p:415-424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00196-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Zengying & Ma, Xiaoqian & Lin, Hai & Tang, Yuting, 2011. "The energy consumption and environmental impacts of SCR technology in China," Applied Energy, Elsevier, vol. 88(4), pages 1120-1129, April.
    2. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    3. Li, Zhengqi & Liu, Guangkui & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Combustion and NOx emission characteristics of a retrofitted down-fired 660Â MWe utility boiler at different loads," Applied Energy, Elsevier, vol. 88(7), pages 2400-2406, July.
    4. Hodžić, Nihad & Kazagić, Anes & Smajević, Izet, 2016. "Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas," Applied Energy, Elsevier, vol. 168(C), pages 38-47.
    5. Elbaz, A.M. & Moneib, H.A. & Shebil, K.M. & Roberts, W.L., 2019. "Low NOX - LPG staged combustion double swirl flames," Renewable Energy, Elsevier, vol. 138(C), pages 303-315.
    6. Georgakellos, Dimitrios A., 2010. "Impact of a possible environmental externalities internalisation on energy prices: The case of the greenhouse gases from the Greek electricity sector," Energy Economics, Elsevier, vol. 32(1), pages 202-209, January.
    7. Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
    8. Ma, Lun & Fang, Qingyan & Yin, Chungen & Wang, Huajian & Zhang, Cheng & Chen, Gang, 2019. "A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions," Applied Energy, Elsevier, vol. 238(C), pages 453-465.
    9. Li, Zhengqi & Jing, Jianping & Liu, Guangkui & Chen, Zhichao & Liu, Chunlong, 2010. "Measurement of gas species, temperatures, char burnout, and wall heat fluxes in a 200-MWe lignite-fired boiler at different loads," Applied Energy, Elsevier, vol. 87(4), pages 1217-1230, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:74:y:2003:i:3-4:p:415-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.